CONTRACTING EXCEPTIONAL DIVISORS BY THE KAHLER-RICCI FLOW

被引:48
|
作者
Song, Jian [1 ]
Weinkove, Ben [2 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[2] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
MULTIPLIER IDEAL SHEAVES; MONGE-AMPERE EQUATIONS; EINSTEIN METRICS; SCALAR CURVATURE; MANIFOLDS; CONVERGENCE; VARIETIES; STABILITY; EXISTENCE;
D O I
10.1215/00127094-1962881
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a criterion under which a solution g(t) of the Kahler-Ricci flow contracts exceptional divisors on a compact manifold and can be uniquely continued on a new manifold. As t tends to the singular time T from each direction, we prove the convergence of g(t) in the sense of Gromov-Hausdorff and smooth convergence away from the exceptional divisors. We call this behavior for the Kahler-Ricci flow a canonical surgical contraction. In particular, our results show that the Kahler-Ricci flow on a projective algebraic surface will perform a sequence of canonical surgical contractions until, in finite time, either the minimal model is obtained, or the volume of the manifold tends to zero.
引用
收藏
页码:367 / 415
页数:49
相关论文
共 50 条
  • [1] Contracting exceptional divisors by the Kahler-Ricci flow II
    Song, Jian
    Weinkove, Ben
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2014, 108 : 1529 - 1561
  • [2] Stability of Kahler-Ricci Flow
    Chen, Xiuxiong
    Li, Haozhao
    JOURNAL OF GEOMETRIC ANALYSIS, 2010, 20 (02) : 306 - 334
  • [3] Notes on Kahler-Ricci Flow
    Tian, Gang
    RICCI FLOW AND GEOMETRIC APPLICATIONS, 2016, 2166 : 105 - 136
  • [4] Regularity of the Kahler-Ricci flow
    Tian, Gang
    Zhang, Zhenlei
    COMPTES RENDUS MATHEMATIQUE, 2013, 351 (15-16) : 635 - 638
  • [5] Convergence of a Kahler-Ricci flow
    Sesum, N
    MATHEMATICAL RESEARCH LETTERS, 2005, 12 (5-6) : 623 - 632
  • [6] The twisted Kahler-Ricci flow
    Collins, Tristan C.
    Szekelyhidi, Gabor
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 716 : 179 - 205
  • [7] A modified Kahler-Ricci flow
    Zhang, Zhou
    MATHEMATISCHE ANNALEN, 2009, 345 (03) : 559 - 579
  • [8] An Introduction to the Kahler-Ricci Flow
    Song, Jian
    Weinkove, Ben
    INTRODUCTION TO THE KAHLER-RICCI FLOW, 2013, 2086 : 89 - 188
  • [9] Monotonicity and Kahler-Ricci flow
    Ni, L
    GEOMETRIC EVOLUTION EQUATIONS, 2005, 367 : 149 - 165
  • [10] On convergence of the Kahler-Ricci flow
    Munteanu, Ovidiu
    Szekelyhidi, Gabor
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2011, 19 (05) : 887 - 903