CONTRACTING EXCEPTIONAL DIVISORS BY THE KAHLER-RICCI FLOW

被引:48
|
作者
Song, Jian [1 ]
Weinkove, Ben [2 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[2] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
MULTIPLIER IDEAL SHEAVES; MONGE-AMPERE EQUATIONS; EINSTEIN METRICS; SCALAR CURVATURE; MANIFOLDS; CONVERGENCE; VARIETIES; STABILITY; EXISTENCE;
D O I
10.1215/00127094-1962881
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a criterion under which a solution g(t) of the Kahler-Ricci flow contracts exceptional divisors on a compact manifold and can be uniquely continued on a new manifold. As t tends to the singular time T from each direction, we prove the convergence of g(t) in the sense of Gromov-Hausdorff and smooth convergence away from the exceptional divisors. We call this behavior for the Kahler-Ricci flow a canonical surgical contraction. In particular, our results show that the Kahler-Ricci flow on a projective algebraic surface will perform a sequence of canonical surgical contractions until, in finite time, either the minimal model is obtained, or the volume of the manifold tends to zero.
引用
收藏
页码:367 / 415
页数:49
相关论文
共 50 条
  • [31] THE MABUCHI METRIC AND THE KAHLER-RICCI FLOW
    McFeron, Donovan
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (03) : 1005 - 1012
  • [32] The Kahler-Ricci flow on Fano bundles
    Fu, Xin
    Zhang, Shijin
    MATHEMATISCHE ZEITSCHRIFT, 2017, 286 (3-4) : 1605 - 1626
  • [33] The Kahler-Ricci flow through singularities
    Song, Jian
    Tian, Gang
    INVENTIONES MATHEMATICAE, 2017, 207 (02) : 519 - 595
  • [34] The Kahler-Ricci Flow on Projective Bundles
    Song, Jian
    Szekelyhidi, Gabor
    Weinkove, Ben
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (02) : 243 - 257
  • [35] Limits of solutions to the Kahler-Ricci flow
    Cao, HD
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1997, 45 (02) : 257 - 272
  • [36] On the Kahler-Ricci flow on complex surfaces
    Phong, D. H.
    Sturm, Jacob
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2005, 1 (02) : 405 - 413
  • [37] Positivity of Ricci curvature under the Kahler-Ricci flow
    Knopf, D
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2006, 8 (01) : 123 - 133
  • [38] THE KAHLER-RICCI FLOW AND OPTIMAL DEGENERATIONS
    Dervan, Ruadhai
    Szekelyhidi, Gabor
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2020, 116 (01) : 187 - 203
  • [39] An Introduction to the Kahler-Ricci Flow Introduction
    Boucksom, Sebastien
    Eyssidieux, Philippe
    Guedj, Vincent
    INTRODUCTION TO THE KAHLER-RICCI FLOW, 2013, 2086 : 1 - 6
  • [40] The Kahler-Ricci flow on pseudoconvex domains
    Ge, Huabin
    Lin, Aijin
    Shen, Liangming
    MATHEMATICAL RESEARCH LETTERS, 2019, 26 (06) : 1603 - 1627