We give a criterion under which a solution g(t) of the Kahler-Ricci flow contracts exceptional divisors on a compact manifold and can be uniquely continued on a new manifold. As t tends to the singular time T from each direction, we prove the convergence of g(t) in the sense of Gromov-Hausdorff and smooth convergence away from the exceptional divisors. We call this behavior for the Kahler-Ricci flow a canonical surgical contraction. In particular, our results show that the Kahler-Ricci flow on a projective algebraic surface will perform a sequence of canonical surgical contractions until, in finite time, either the minimal model is obtained, or the volume of the manifold tends to zero.
机构:
Univ Paris 06, CNRS, Inst Math Jussieu, F-75251 Paris, FranceUniv Paris 06, CNRS, Inst Math Jussieu, F-75251 Paris, France
Boucksom, Sebastien
Eyssidieux, Philippe
论文数: 0引用数: 0
h-index: 0
机构:
Univ Grenoble 1, Inst Fourier, F-38402 St Martin Dheres, France
Univ Grenoble 1, Inst Univ France, F-38402 St Martin Dheres, FranceUniv Paris 06, CNRS, Inst Math Jussieu, F-75251 Paris, France
Eyssidieux, Philippe
Guedj, Vincent
论文数: 0引用数: 0
h-index: 0
机构:
Univ Toulouse 3, Inst Math Toulouse, F-31062 Toulouse 9, France
Univ Toulouse 3, Inst Univ France, F-31062 Toulouse 9, FranceUniv Paris 06, CNRS, Inst Math Jussieu, F-75251 Paris, France
Guedj, Vincent
INTRODUCTION TO THE KAHLER-RICCI FLOW,
2013,
2086
: 1
-
6