van der Waals oxide heteroepitaxy for soft transparent electronics

被引:30
|
作者
Bitla, Yugandhar [1 ]
Chu, Ying-Hao [2 ,3 ]
机构
[1] Cent Univ Rajasthan, Sch Phys Sci, Dept Phys, Ajmer 305817, India
[2] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan
[3] Natl Chiao Tung Univ, Dept Electrophys, Hsinchu 30010, Taiwan
关键词
EPITAXIAL-GROWTH; THIN-FILMS; HIGH-PERFORMANCE; MUSCOVITE MICA; 2-DIMENSIONAL MATERIALS; FLEXIBLE HETEROEPITAXY; SOLAR-CELLS; HETEROSTRUCTURES; TRANSISTORS; PLATFORM;
D O I
10.1039/d0nr04219f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The quest for multifunctional, low-power and environment friendly electronics has brought research on materials to the forefront. For instance, as the emerging field of transparent flexible electronics is set to greatly impact our daily lives, more stringent requirements are being imposed on functional materials. Inherently flexible polymers and metal foil templates have yielded limited success due to their incompatible high-temperature growth and non-transparency, respectively. Although the epitaxial-transfer strategy has shown promising results, it suffers from tedious and complicated lift-off-transfer processes. The advent of graphene, in particular, and 2D layered materials, in general, with ultrathin scalability has revolutionized this field. Herein, we review the direct growth of epitaxial functional oxides on flexible transparent mica substratesviavan der Waals heteroepitaxy, which mitigates misfit strain and substrate clamping for soft transparent electronics applications. Recent advances in practical applications of flexible and transparent electronic elements are discussed. Finally, several important directions, challenges and perspectives for commercialization are also outlined. We anticipate that this promising strategy to build transparent flexible optoelectronic devices and improve their performance will open up new avenues for researchers to explore.
引用
收藏
页码:18523 / 18544
页数:22
相关论文
共 50 条
  • [21] Reconfigurable electronics by disassembling and reassembling van der Waals heterostructures
    Tao, Quanyang
    Wu, Ruixia
    Li, Qianyuan
    Kong, Lingan
    Chen, Yang
    Jiang, Jiayang
    Lu, Zheyi
    Li, Bailing
    Li, Wanying
    Li, Zhiwei
    Liu, Liting
    Duan, Xidong
    Liao, Lei
    Liu, Yuan
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [22] Reconfigurable electronics by disassembling and reassembling van der Waals heterostructures
    Quanyang Tao
    Ruixia Wu
    Qianyuan Li
    Lingan Kong
    Yang Chen
    Jiayang Jiang
    Zheyi Lu
    Bailing Li
    Wanying Li
    Zhiwei Li
    Liting Liu
    Xidong Duan
    Lei Liao
    Yuan Liu
    Nature Communications, 12
  • [23] A Fabrication and Measurement Method for a Flexible Ferroelectric Element Based on Van Der Waals Heteroepitaxy
    Jiang, Jie
    Bitla, Yugandhar
    Peng, Qiang-xiang
    Zhou, Yi-Chun
    Chu, Ying-Hao
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2018, (134):
  • [24] Atomically thin half-van der Waals metals enabled by confinement heteroepitaxy
    Natalie Briggs
    Brian Bersch
    Yuanxi Wang
    Jue Jiang
    Roland J. Koch
    Nadire Nayir
    Ke Wang
    Marek Kolmer
    Wonhee Ko
    Ana De La Fuente Duran
    Shruti Subramanian
    Chengye Dong
    Jeffrey Shallenberger
    Mingming Fu
    Qiang Zou
    Ya-Wen Chuang
    Zheng Gai
    An-Ping Li
    Aaron Bostwick
    Chris Jozwiak
    Cui-Zu Chang
    Eli Rotenberg
    Jun Zhu
    Adri C. T. van Duin
    Vincent Crespi
    Joshua A. Robinson
    Nature Materials, 2020, 19 : 637 - 643
  • [25] Atomically thin half-van der Waals metals enabled by confinement heteroepitaxy
    Briggs, Natalie
    Bersch, Brian
    Wang, Yuanxi
    Jiang, Jue
    Koch, Roland J.
    Nayir, Nadire
    Wang, Ke
    Kolmer, Marek
    Ko, Wonhee
    Duran, Ana De La Fuente
    Subramanian, Shruti
    Dong, Chengye
    Shallenberger, Jeffrey
    Fu, Mingming
    Zou, Qiang
    Chuang, Ya-Wen
    Gai, Zheng
    Li, An-Ping
    Bostwick, Aaron
    Jozwiak, Chris
    Chang, Cui-Zu
    Rotenberg, Eli
    Zhu, Jun
    van Duin, Adri C. T.
    Crespi, Vincent
    Robinson, Joshua A.
    NATURE MATERIALS, 2020, 19 (06) : 637 - +
  • [26] Solution-processable van der Waals thin film electronics
    Lin, Zhaoyang
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [27] Van der Waals semiconductor embedded transparent photovoltaic for broadband optoelectronics
    Kumar, Naveen
    Patel, Malkeshkumar
    Lim, Donggun
    Lee, Kibum
    Kim, Joondong
    SURFACES AND INTERFACES, 2022, 34
  • [28] Van der Waals, Casimir, and Lifshitz forces in soft matter
    Kats, E. I.
    PHYSICS-USPEKHI, 2015, 58 (09) : 892 - 896
  • [29] Crystal-phase intergradation in InAs nanostructures grown by van der Waals heteroepitaxy on graphene
    Choi, Ji Eun
    Yoo, Jinkyoung
    Lee, Donghwa
    Hong, Young Joon
    Fukui, Takashi
    APPLIED PHYSICS LETTERS, 2018, 112 (14)
  • [30] Construction of van der Waals substrates for largely mismatched heteroepitaxy systems using first principles
    ZhiMing Shi
    XiaoJuan Sun
    YuPing Jia
    XinKe Liu
    ShanLi Zhang
    ZhanBin Qi
    DaBing Li
    Science China Physics, Mechanics & Astronomy, 2019, 62