van der Waals oxide heteroepitaxy for soft transparent electronics

被引:30
|
作者
Bitla, Yugandhar [1 ]
Chu, Ying-Hao [2 ,3 ]
机构
[1] Cent Univ Rajasthan, Sch Phys Sci, Dept Phys, Ajmer 305817, India
[2] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan
[3] Natl Chiao Tung Univ, Dept Electrophys, Hsinchu 30010, Taiwan
关键词
EPITAXIAL-GROWTH; THIN-FILMS; HIGH-PERFORMANCE; MUSCOVITE MICA; 2-DIMENSIONAL MATERIALS; FLEXIBLE HETEROEPITAXY; SOLAR-CELLS; HETEROSTRUCTURES; TRANSISTORS; PLATFORM;
D O I
10.1039/d0nr04219f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The quest for multifunctional, low-power and environment friendly electronics has brought research on materials to the forefront. For instance, as the emerging field of transparent flexible electronics is set to greatly impact our daily lives, more stringent requirements are being imposed on functional materials. Inherently flexible polymers and metal foil templates have yielded limited success due to their incompatible high-temperature growth and non-transparency, respectively. Although the epitaxial-transfer strategy has shown promising results, it suffers from tedious and complicated lift-off-transfer processes. The advent of graphene, in particular, and 2D layered materials, in general, with ultrathin scalability has revolutionized this field. Herein, we review the direct growth of epitaxial functional oxides on flexible transparent mica substratesviavan der Waals heteroepitaxy, which mitigates misfit strain and substrate clamping for soft transparent electronics applications. Recent advances in practical applications of flexible and transparent electronic elements are discussed. Finally, several important directions, challenges and perspectives for commercialization are also outlined. We anticipate that this promising strategy to build transparent flexible optoelectronic devices and improve their performance will open up new avenues for researchers to explore.
引用
收藏
页码:18523 / 18544
页数:22
相关论文
共 50 条
  • [41] Integration of Ultrathin Hafnium Oxide with a Clean van der Waals Interface for Two-Dimensional Sandwich Heterostructure Electronics
    Jing, Yumei
    Dai, Xianfu
    Yang, Junqiang
    Zhang, Xiaobin
    Wang, Zhongwang
    Liu, Xiaochi
    Li, Huamin
    Yuan, Yahua
    Zhou, Xuefan
    Luo, Hang
    Zhang, Dou
    Sun, Jian
    NANO LETTERS, 2024, 24 (13) : 3937 - 3944
  • [42] Microscopic Mechanism of Van der Waals Heteroepitaxy in the Formation of MoS2/hBN Vertical Heterostructures
    Okada, Mitsuhiro
    Maruyama, Mina
    Okada, Susumu
    Warner, Jamie H.
    Kureishi, Yusuke
    Uchiyama, Yosuke
    Taniguchi, Takashi
    Watanabe, Kenji
    Shimizu, Tetsuo
    Kubo, Toshitaka
    Ishihara, Masatou
    Shinohara, Hisanori
    Kitaura, Ryo
    ACS OMEGA, 2020, 5 (49): : 31692 - 31699
  • [43] Van der Waals quintessence
    Capozziello, S
    Cardone, VF
    Carloni, S
    Troisi, A
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON THINKING, OBSERVING AND MINING THE UNIVERSE, 2004, : 307 - 308
  • [44] JAN VAN DER WAALS
    Fuhring, Peter
    PRINT QUARTERLY, 2009, 26 (03) : 300 - 302
  • [45] Van der Waals heterostructures
    Barnes, Natalie
    NATURE REVIEWS METHODS PRIMERS, 2022, 2 (01):
  • [46] Van der Waals heterostructures
    Nature Reviews Methods Primers, 2
  • [47] Van der Waals heterostructures
    A. K. Geim
    I. V. Grigorieva
    Nature, 2013, 499 : 419 - 425
  • [48] Van der Waals quintessence
    Capozziello, S
    De Martino, S
    Falanga, M
    PHYSICS LETTERS A, 2002, 299 (5-6) : 494 - 498
  • [49] Van der Waals heterostructures
    Geim, A. K.
    Grigorieva, I. V.
    NATURE, 2013, 499 (7459) : 419 - 425
  • [50] Van der Waals superlattices
    Huaying Ren
    Zhong Wan
    Xiangfeng Duan
    National Science Review, 2022, 9 (05) : 14 - 16