Atomically thin half-van der Waals metals enabled by confinement heteroepitaxy

被引:131
|
作者
Briggs, Natalie [1 ,2 ,3 ]
Bersch, Brian [1 ,2 ]
Wang, Yuanxi [2 ,3 ]
Jiang, Jue [4 ]
Koch, Roland J. [5 ,6 ]
Nayir, Nadire [3 ,7 ]
Wang, Ke [8 ]
Kolmer, Marek [9 ]
Ko, Wonhee [9 ]
Duran, Ana De La Fuente [1 ]
Subramanian, Shruti [1 ,2 ]
Dong, Chengye [1 ,2 ]
Shallenberger, Jeffrey [8 ]
Fu, Mingming [9 ]
Zou, Qiang [9 ]
Chuang, Ya-Wen [4 ]
Gai, Zheng [9 ]
Li, An-Ping [9 ]
Bostwick, Aaron [5 ]
Jozwiak, Chris [5 ]
Chang, Cui-Zu [4 ]
Rotenberg, Eli [5 ]
Zhu, Jun [2 ,4 ]
van Duin, Adri C. T. [1 ,3 ,7 ,8 ,10 ,11 ,12 ]
Crespi, Vincent [2 ,3 ,4 ,8 ]
Robinson, Joshua A. [1 ,2 ,3 ,8 ,13 ]
机构
[1] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[2] Penn State Univ, Ctr 2 Dimens & Layered Mat, University Pk, PA 16802 USA
[3] Penn State Univ, 2 Dimens Crystal Consortium, University Pk, PA 16802 USA
[4] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA
[5] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA USA
[6] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA USA
[7] Penn State Univ, Dept Mech Engn, University Pk, PA 16802 USA
[8] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA
[9] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA
[10] Penn State Univ, Dept Chem, University Pk, PA USA
[11] Penn State Univ, Dept Engn Sci & Mech, 227 Hammond Bldg, University Pk, PA 16802 USA
[12] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA
[13] Penn State Univ, Ctr Atomically Thin Multifunct Coatings, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
TRANSITION-TEMPERATURE; SUPERCONDUCTING TRANSITION; GRAPHENE; GALLIUM; PSEUDOPOTENTIALS; MORPHOLOGY; PHASE;
D O I
10.1038/s41563-020-0631-x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Atomically thin two-dimensional (2D) metals may be key ingredients in next-generation quantum and optoelectronic devices. However, 2D metals must be stabilized against environmental degradation and integrated into heterostructure devices at the wafer scale. The high-energy interface between silicon carbide and epitaxial graphene provides an intriguing framework for stabilizing a diverse range of 2D metals. Here we demonstrate large-area, environmentally stable, single-crystal 2D gallium, indium and tin that are stabilized at the interface of epitaxial graphene and silicon carbide. The 2D metals are covalently bonded to SiC below but present a non-bonded interface to the graphene overlayer; that is, they are 'half van der Waals' metals with strong internal gradients in bonding character. These non-centrosymmetric 2D metals offer compelling opportunities for superconducting devices, topological phenomena and advanced optoelectronic properties. For example, the reported 2D Ga is a superconductor that combines six strongly coupled Ga-derived electron pockets with a large nearly free-electron Fermi surface that closely approaches the Dirac points of the graphene overlayer. Single-crystal 2D metals are stabilized at the interface between epitaxial graphene and silicon carbide, with strong internal gradients in bonding character. The confined 2D metals demonstrate compelling superconducting properties.
引用
收藏
页码:637 / +
页数:9
相关论文
共 50 条
  • [1] Atomically thin half-van der Waals metals enabled by confinement heteroepitaxy
    Natalie Briggs
    Brian Bersch
    Yuanxi Wang
    Jue Jiang
    Roland J. Koch
    Nadire Nayir
    Ke Wang
    Marek Kolmer
    Wonhee Ko
    Ana De La Fuente Duran
    Shruti Subramanian
    Chengye Dong
    Jeffrey Shallenberger
    Mingming Fu
    Qiang Zou
    Ya-Wen Chuang
    Zheng Gai
    An-Ping Li
    Aaron Bostwick
    Chris Jozwiak
    Cui-Zu Chang
    Eli Rotenberg
    Jun Zhu
    Adri C. T. van Duin
    Vincent Crespi
    Joshua A. Robinson
    Nature Materials, 2020, 19 : 637 - 643
  • [2] Van der Waals oxide heteroepitaxy
    Ying-Hao Chu
    npj Quantum Materials, 2
  • [3] Van der Waals oxide heteroepitaxy
    Chu, Ying-Hao
    NPJ QUANTUM MATERIALS, 2017, 2
  • [4] van der Waals heteroepitaxy on muscovite
    Yen, Min
    Bitla, Yugandhar
    Chu, Ying-Hao
    MATERIALS CHEMISTRY AND PHYSICS, 2019, 234 : 185 - 195
  • [5] van der Waals Heteroepitaxy of Semiconductor Nanowires
    Hong, Young Joon
    Lee, Chul-Ho
    SEMICONDUCTOR NANOWIRES I: GROWTH AND THEORY, 2015, 93 : 125 - 172
  • [6] Van Der Waals Heterostructures Based on Atomically-Thin Superconductors
    Boix-Constant, Carla
    Manas-Valero, Samuel
    Cordoba, Rosa
    Coronado, Eugenio
    ADVANCED ELECTRONIC MATERIALS, 2021, 7 (07):
  • [7] Atomically-thin van der Waals Heterostructure Solar Cells
    Mueller, T.
    Furchi, M. M.
    Zechmeister, A.
    Schuler, S.
    Pospischil, A.
    2015 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2015,
  • [8] Atomically Thin van der Waals Semiconductors-A Theoretical Perspective
    Gies, Christopher
    Steinhoff, Alexander
    LASER & PHOTONICS REVIEWS, 2021, 15 (04)
  • [9] Unraveling exciton dynamics in an atomically thin van der Waals magnet
    Nilforoushan, Niloufar
    Meineke, Christian
    Schlosser, Jakob
    Zizlsperger, Martin
    Liebich, Marlene
    Mosina, Kseniia
    Terres, Sophia
    Chernikov, Alexey
    Sofer, Zdenek
    Huber, Markus A.
    Florian, Matthias
    Kira, Mackillo
    Dirnberger, Florian
    Huber, Rupert
    2024 49TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES, IRMMW-THZ 2024, 2024,
  • [10] van der Waals Heteroepitaxy of Germanene Islands on Graphite
    Persichetti, Luca
    Jardali, Fatme
    Vach, Holger
    Sgarlata, Anna
    Berbezier, Isabelle
    De Crescenzi, Maurizio
    Balzarotti, Adalberto
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (16): : 3246 - 3251