Atomically thin half-van der Waals metals enabled by confinement heteroepitaxy

被引:131
|
作者
Briggs, Natalie [1 ,2 ,3 ]
Bersch, Brian [1 ,2 ]
Wang, Yuanxi [2 ,3 ]
Jiang, Jue [4 ]
Koch, Roland J. [5 ,6 ]
Nayir, Nadire [3 ,7 ]
Wang, Ke [8 ]
Kolmer, Marek [9 ]
Ko, Wonhee [9 ]
Duran, Ana De La Fuente [1 ]
Subramanian, Shruti [1 ,2 ]
Dong, Chengye [1 ,2 ]
Shallenberger, Jeffrey [8 ]
Fu, Mingming [9 ]
Zou, Qiang [9 ]
Chuang, Ya-Wen [4 ]
Gai, Zheng [9 ]
Li, An-Ping [9 ]
Bostwick, Aaron [5 ]
Jozwiak, Chris [5 ]
Chang, Cui-Zu [4 ]
Rotenberg, Eli [5 ]
Zhu, Jun [2 ,4 ]
van Duin, Adri C. T. [1 ,3 ,7 ,8 ,10 ,11 ,12 ]
Crespi, Vincent [2 ,3 ,4 ,8 ]
Robinson, Joshua A. [1 ,2 ,3 ,8 ,13 ]
机构
[1] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[2] Penn State Univ, Ctr 2 Dimens & Layered Mat, University Pk, PA 16802 USA
[3] Penn State Univ, 2 Dimens Crystal Consortium, University Pk, PA 16802 USA
[4] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA
[5] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA USA
[6] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA USA
[7] Penn State Univ, Dept Mech Engn, University Pk, PA 16802 USA
[8] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA
[9] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA
[10] Penn State Univ, Dept Chem, University Pk, PA USA
[11] Penn State Univ, Dept Engn Sci & Mech, 227 Hammond Bldg, University Pk, PA 16802 USA
[12] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA
[13] Penn State Univ, Ctr Atomically Thin Multifunct Coatings, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
TRANSITION-TEMPERATURE; SUPERCONDUCTING TRANSITION; GRAPHENE; GALLIUM; PSEUDOPOTENTIALS; MORPHOLOGY; PHASE;
D O I
10.1038/s41563-020-0631-x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Atomically thin two-dimensional (2D) metals may be key ingredients in next-generation quantum and optoelectronic devices. However, 2D metals must be stabilized against environmental degradation and integrated into heterostructure devices at the wafer scale. The high-energy interface between silicon carbide and epitaxial graphene provides an intriguing framework for stabilizing a diverse range of 2D metals. Here we demonstrate large-area, environmentally stable, single-crystal 2D gallium, indium and tin that are stabilized at the interface of epitaxial graphene and silicon carbide. The 2D metals are covalently bonded to SiC below but present a non-bonded interface to the graphene overlayer; that is, they are 'half van der Waals' metals with strong internal gradients in bonding character. These non-centrosymmetric 2D metals offer compelling opportunities for superconducting devices, topological phenomena and advanced optoelectronic properties. For example, the reported 2D Ga is a superconductor that combines six strongly coupled Ga-derived electron pockets with a large nearly free-electron Fermi surface that closely approaches the Dirac points of the graphene overlayer. Single-crystal 2D metals are stabilized at the interface between epitaxial graphene and silicon carbide, with strong internal gradients in bonding character. The confined 2D metals demonstrate compelling superconducting properties.
引用
收藏
页码:637 / +
页数:9
相关论文
共 50 条
  • [21] van der Waals oxide heteroepitaxy for soft transparent electronics
    Bitla, Yugandhar
    Chu, Ying-Hao
    NANOSCALE, 2020, 12 (36) : 18523 - 18544
  • [22] Superfluid response of an atomically thin gate-tuned van der Waals superconductor
    Alexander Jarjour
    G. M. Ferguson
    Brian T. Schaefer
    Menyoung Lee
    Yen Lee Loh
    Nandini Trivedi
    Katja C. Nowack
    Nature Communications, 14
  • [23] Decoupling interface effect on the phase stability of CdS thin films by van der Waals heteroepitaxy
    Sun, Xin
    Wang, Yiping
    Seewald, Lucas J.
    Chen, Zhizhong
    Shi, Jian
    Washington, Morris A.
    Lu, Toh-Ming
    APPLIED PHYSICS LETTERS, 2017, 110 (04)
  • [24] Experimental Adhesion Energy in van der Waals Crystals and Heterostructures from Atomically Thin Bubbles
    Blundo, Elena
    Yildirim, Tanju
    Pettinari, Giorgio
    Polimeni, Antonio
    PHYSICAL REVIEW LETTERS, 2021, 127 (04)
  • [25] Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures
    Yu-Chuan Lin
    Ram Krishna Ghosh
    Rafik Addou
    Ning Lu
    Sarah M. Eichfeld
    Hui Zhu
    Ming-Yang Li
    Xin Peng
    Moon J. Kim
    Lain-Jong Li
    Robert M. Wallace
    Suman Datta
    Joshua A. Robinson
    Nature Communications, 6
  • [26] Giant Magnetic Anisotropy in the Atomically Thin van der Waals Antiferromagnet FePS3
    Lee, Youjin
    Son, Suhan
    Kim, Chaebin
    Kang, Soonmin
    Shen, Junying
    Kenzelmann, Michel
    Delley, Bernard
    Savchenko, Tatiana
    Parchenko, Sergii
    Na, Woongki
    Choi, Ki-Young
    Kim, Wondong
    Cheong, Hyeonsik
    Derlet, Peter M.
    Kleibert, Armin
    Park, Je-Geun
    ADVANCED ELECTRONIC MATERIALS, 2023, 9 (02)
  • [27] Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures
    Lin, Yu-Chuan
    Ghosh, Ram Krishna
    Addou, Rafik
    Lu, Ning
    Eichfeld, Sarah M.
    Zhu, Hui
    Li, Ming-Yang
    Peng, Xin
    Kim, Moon J.
    Li, Lain-Jong
    Wallace, Robert M.
    Datta, Suman
    Robinson, Joshua A.
    NATURE COMMUNICATIONS, 2015, 6
  • [28] Efficient All-Optical Plasmonic Modulators with Atomically Thin Van Der Waals Heterostructures
    Guo, Xiangdong
    Liu, Ruina
    Hu, Debo
    Hu, Hai
    Wei, Zheng
    Wang, Rui
    Dai, Yunyun
    Cheng, Yang
    Chen, Ke
    Liu, Kaihui
    Zhang, Guangyu
    Zhu, Xing
    Sun, Zhipei
    Yang, Xiaoxia
    Dai, Qing
    ADVANCED MATERIALS, 2020, 32 (11)
  • [29] van der Waals coupling in atomically doped carbon nanotubes
    Bondarev, IV
    Lambin, P
    PHYSICAL REVIEW B, 2005, 72 (03)
  • [30] Van der Waals Heteroepitaxy of GaSe and InSe, Quantum Wells, and Superlattices
    Claro, Marcel S.
    Martinez-Pastor, Juan P.
    Molina-Sanchez, Alejandro
    El Hajraoui, Khalil
    Grzonka, Justyna
    Adl, Hamid Pashaei
    Marron, David Fuertes
    Ferreira, Paulo J.
    Bondarchuk, Oleksandr
    Sadewasser, Sascha
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (13)