The nonconforming virtual element method for the Darcy-Stokes problem

被引:11
|
作者
Zhao, Jikun [1 ]
Zhang, Bei [2 ]
Mao, Shipeng [3 ,4 ]
Chen, Shaochun [1 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
[2] Henan Univ Technol, Coll Sci, Zhengzhou 450001, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, Univ Chinese Acad Sci, LSEC, Beijing 100190, Peoples R China
[4] Chinese Acad Sci, Acad Math & Syst Sci, Univ Chinese Acad Sci, Inst Computat Math, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonconforming virtual element; Darcy-Stokes problem; Uniform convergence; Polygonal mesh;
D O I
10.1016/j.cma.2020.113251
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present the nonconforming virtual element method for the Darcy-Stokes problem. By using a gradient projection operator and a special polynomial subspace orthogonal to the gradient of some polynomial space, we construct a H-1-nonconforming but H(div)-conforming virtual element that allows us to compute the L-2-projection. The optimal convergence is proved under the assumption of sufficient regularity, and the uniform convergence is also obtained for the lowest-order case. Besides, we establish a discrete exact sequence of de Rham complex related to the nonconforming virtual element. Finally, we carry out some numerical tests to make a comparison of the convergence between different nonconforming virtual elements and confirm the optimal and uniform convergence of the nonconforming virtual element. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] THE DIVERGENCE-FREE NONCONFORMING VIRTUAL ELEMENT FOR THE STOKES PROBLEM
    Zhao, Jikun
    Zhang, Bei
    Mao, Shipeng
    Chen, Shaochun
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (06) : 2730 - 2759
  • [22] The divergence-free nonconforming virtual element method for the Navier-Stokes problem
    Zhang, Bei
    Zhao, Jikun
    Li, Meng
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (03) : 1977 - 1995
  • [23] Weak Galerkin method for the coupled Darcy-Stokes flow
    Chen, Wenbin
    Wang, Fang
    Wang, Yanqiu
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (02) : 897 - 921
  • [24] A Weak Galerkin Method for the Coupled Darcy-Stokes Problem with a Nonstandard Transmission Condition on the Stokes Boundary
    Zhao, Jingjun
    Lv, Zhiqiang
    Xu, Yang
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2024,
  • [25] Unified Finite Element Discretizations of Coupled Darcy-Stokes Flow
    Karper, Trygve
    Mardal, Kent-Andre
    Winther, Ragnar
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2009, 25 (02) : 311 - 326
  • [26] The nonconforming virtual element method for the Navier-Stokes equations
    Liu, Xin
    Chen, Zhangxin
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (01) : 51 - 74
  • [27] The nonconforming virtual element method for the Navier-Stokes equations
    Xin Liu
    Zhangxin Chen
    Advances in Computational Mathematics, 2019, 45 : 51 - 74
  • [28] A Discontinuous Finite Volume Method for the Darcy-Stokes Equations
    Yin, Zhe
    Jiang, Ziwen
    Xu, Qiang
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [29] A formal construction of a divergence-free basis in the nonconforming virtual element method for the Stokes problem
    Kwak, Do Y.
    Park, Hyeokjoo
    NUMERICAL ALGORITHMS, 2022, 91 (01) : 449 - 471
  • [30] A formal construction of a divergence-free basis in the nonconforming virtual element method for the Stokes problem
    Do Y. Kwak
    Hyeokjoo Park
    Numerical Algorithms, 2022, 91 : 449 - 471