The nonconforming virtual element method for the Navier-Stokes equations

被引:0
|
作者
Xin Liu
Zhangxin Chen
机构
[1] Xi’an Jiaotong University,School of Mathematics and Statistics
[2] Istituto di Matematica Applicata e Tecnologie Informatiche del C.N.R,College of Petroleum Engineering
[3] China University of Petroleum,Department of Chemical and Petroleum Engineering, Schulich School of Engineering
[4] University of Calgary,undefined
来源
关键词
Nonconforming virtual element method; Navier-Stokes equations; General elements; Stability; Energy and ; optimal error estimates; 65N30; 65N12; 65N15; 76D05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper a unified nonconforming virtual element scheme for the Navier-Stokes equations with different dimensions and different polynomial degrees is described. Its key feature is the treatment of general elements including non-convex and degenerate elements. According to the properties of an enhanced nonconforming virtual element space, the stability of this scheme is proved based on the choice of a proper velocity and pressure pair. Furthermore, we establish optimal error estimates in the discrete energy norm for velocity and the L2 norm for both velocity and pressure. Finally, we test some numerical examples to validate the theoretical results.
引用
收藏
页码:51 / 74
页数:23
相关论文
共 50 条
  • [1] The nonconforming virtual element method for the Navier-Stokes equations
    Liu, Xin
    Chen, Zhangxin
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (01) : 51 - 74
  • [2] A nonconforming finite element method for the stationary Navier-Stokes equations
    Karakashian, OA
    Jureidini, WN
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (01) : 93 - 120
  • [3] A superconvergent nonconforming mixed finite element method for the Navier-Stokes equations
    Ren, Jincheng
    Ma, Yue
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (02) : 646 - 660
  • [4] Superconvergence of a nonconforming finite element method for the stationary Navier-Stokes equations
    Huang, Pengzhan
    Ma, Xiaoling
    Zhang, Tong
    [J]. BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2016, 59 (02): : 159 - 174
  • [5] A mixed virtual element method for the Navier-Stokes equations
    Gatica, Gabriel N.
    Munar, Mauricio
    Sequeira, Filander A.
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (14): : 2719 - 2762
  • [6] A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier-Stokes equations
    Cai, ZQ
    Douglas, J
    Ye, X
    [J]. CALCOLO, 1999, 36 (04) : 215 - 232
  • [7] The divergence-free nonconforming virtual element method for the Navier-Stokes problem
    Zhang, Bei
    Zhao, Jikun
    Li, Meng
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (03) : 1977 - 1995
  • [8] A modified nonconforming virtual element with BDM-like reconstruction for the Navier-Stokes equations
    Liu, Xin
    Nie, Yufeng
    [J]. APPLIED NUMERICAL MATHEMATICS, 2021, 167 : 375 - 388
  • [9] Stabilized Multiscale Nonconforming Finite Element Method for the Stationary Navier-Stokes Equations
    Zhang, Tong
    Xu, Shunwei
    Deng, Jien
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [10] THE NONCONFORMING VIRTUAL ELEMENT METHOD FOR THE STOKES EQUATIONS
    Cangiani, Andrea
    Gyrya, Vitaliy
    Manzini, Gianmarco
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (06) : 3411 - 3435