The nonconforming virtual element method for the Navier-Stokes equations

被引:53
|
作者
Liu, Xin [1 ,2 ]
Chen, Zhangxin [1 ,3 ,4 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
[2] CNR, Ist Matemat Appl & Tecnol Informat, Via Ferrata 5a, I-27100 Pavia, Italy
[3] China Univ Petr, Coll Petr Engn, Beijing, Peoples R China
[4] Univ Calgary, Dept Chem & Petr Engn, Schulich Sch Engn, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada
关键词
Nonconforming virtual element method; Navier-Stokes equations; General elements; Stability; Energy and L-2 optimal error estimates; FINITE-DIFFERENCE METHOD; HIGHER-ORDER; CONVERGENCE ANALYSIS; DIFFUSION-PROBLEMS; STATIONARY STOKES;
D O I
10.1007/s10444-018-9602-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper a unified nonconforming virtual element scheme for the Navier-Stokes equations with different dimensions and different polynomial degrees is described. Its key feature is the treatment of general elements including non-convex and degenerate elements. According to the properties of an enhanced nonconforming virtual element space, the stability of this scheme is proved based on the choice of a proper velocity and pressure pair. Furthermore, we establish optimal error estimates in the discrete energy norm for velocity and the L-2 norm for both velocity and pressure. Finally, we test some numerical examples to validate the theoretical results.
引用
收藏
页码:51 / 74
页数:24
相关论文
共 50 条
  • [1] The nonconforming virtual element method for the Navier-Stokes equations
    Xin Liu
    Zhangxin Chen
    [J]. Advances in Computational Mathematics, 2019, 45 : 51 - 74
  • [2] A nonconforming finite element method for the stationary Navier-Stokes equations
    Karakashian, OA
    Jureidini, WN
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (01) : 93 - 120
  • [3] A superconvergent nonconforming mixed finite element method for the Navier-Stokes equations
    Ren, Jincheng
    Ma, Yue
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (02) : 646 - 660
  • [4] Superconvergence of a nonconforming finite element method for the stationary Navier-Stokes equations
    Huang, Pengzhan
    Ma, Xiaoling
    Zhang, Tong
    [J]. BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2016, 59 (02): : 159 - 174
  • [5] A mixed virtual element method for the Navier-Stokes equations
    Gatica, Gabriel N.
    Munar, Mauricio
    Sequeira, Filander A.
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (14): : 2719 - 2762
  • [6] A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier-Stokes equations
    Cai, ZQ
    Douglas, J
    Ye, X
    [J]. CALCOLO, 1999, 36 (04) : 215 - 232
  • [7] The divergence-free nonconforming virtual element method for the Navier-Stokes problem
    Zhang, Bei
    Zhao, Jikun
    Li, Meng
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (03) : 1977 - 1995
  • [8] A modified nonconforming virtual element with BDM-like reconstruction for the Navier-Stokes equations
    Liu, Xin
    Nie, Yufeng
    [J]. APPLIED NUMERICAL MATHEMATICS, 2021, 167 : 375 - 388
  • [9] Stabilized Multiscale Nonconforming Finite Element Method for the Stationary Navier-Stokes Equations
    Zhang, Tong
    Xu, Shunwei
    Deng, Jien
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [10] THE NONCONFORMING VIRTUAL ELEMENT METHOD FOR THE STOKES EQUATIONS
    Cangiani, Andrea
    Gyrya, Vitaliy
    Manzini, Gianmarco
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (06) : 3411 - 3435