EXTENDED NORMAL VECTOR FIELD AND THE WEINGARTEN MAP ON HYPERSURFACES

被引:0
|
作者
Duduchava, Roland [1 ]
Kapanadze, David [1 ]
机构
[1] A Razmadze Math Inst, GE-0193 Tbilisi, Georgia
基金
美国国家科学基金会;
关键词
Hypersurface; shape operator; Weingarten map; Gunter's derivative; Gauss's curvature; mean curvature;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a different method for studying the Weingarten map for a hypersurface in the Euclidean space R-n. Applying the Cartesian coordinates of the ambient space and tangential Gunter's derivatives we obtain a simple matrix representation formula for the Weingarten map for implicit hypersurfaces, which can be applied, for example, to calculate the mean and Gauss's curvatures without passing to intrinsic coordinates.
引用
收藏
页码:485 / 500
页数:16
相关论文
共 50 条
  • [31] A note on Weingarten hypersurfaces in the warped product manifold
    Li, Haizhong
    Wei, Yong
    Xiong, Changwei
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2014, 25 (14)
  • [32] Closed Weingarten Hypersurfaces in Warped Product Manifolds
    de Andrade, Francisco J.
    Barbosa, Joao Lucas M.
    de Lira, Jorge H. S.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (04) : 1691 - 1718
  • [33] Erratum Weingarten hypersurfaces with prescribed gradient image
    John Urbas
    Mathematische Zeitschrift, 2003, 245 : 619 - 623
  • [34] Linear Weingarten hypersurfaces in locally symmetric manifolds
    Chao, Xiaoli
    Wang, Peijun
    HOKKAIDO MATHEMATICAL JOURNAL, 2017, 46 (01) : 29 - 40
  • [35] Weingarten spacelike hypersurfaces in a de Sitter space
    Chen, Junfeng
    Shu, Shichang
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2012, 20 (01): : 387 - 406
  • [36] The Dirichlet problem for Weingarten hypersurfaces in Lorentz manifolds
    Schnürer, OC
    MATHEMATISCHE ZEITSCHRIFT, 2002, 242 (01) : 159 - 181
  • [37] On the geometry of linear Weingarten hypersurfaces in the hyperbolic space
    Aquino, Cicero P.
    de Lima, Henrique F.
    MONATSHEFTE FUR MATHEMATIK, 2013, 171 (3-4): : 259 - 268
  • [38] On compact anisotropic Weingarten hypersurfaces in Euclidean space
    Roth, Julien
    Upadhyay, Abhitosh
    ARCHIV DER MATHEMATIK, 2019, 113 (02) : 213 - 224
  • [39] Remarks on complete Weingarten hypersurfaces in the Euclidean space
    de Lima, Eudes
    PORTUGALIAE MATHEMATICA, 2025, 82 (1-2) : 139 - 153
  • [40] Hypersurfaces in a Euclidean space with a Killing vector field
    Guediri, Mohammed
    Deshmukh, Sharief
    AIMS MATHEMATICS, 2024, 9 (01): : 1899 - 1910