On compact anisotropic Weingarten hypersurfaces in Euclidean space

被引:4
|
作者
Roth, Julien [1 ]
Upadhyay, Abhitosh [2 ]
机构
[1] UPEM UPEC, CNRS, Lab Anal & Math Appl, F-77454 Marne La Vallee, France
[2] Indian Inst Sci, Dept Math, Bangalore 560012, Karnataka, India
关键词
Wulff shape; Weingarten hypersurfaces; Anisotropic mean curvature; CURVATURE;
D O I
10.1007/s00013-019-01315-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that, up to homotheties and translations, the Wulff shape WF is the only compact embedded hypersurface of the Euclidean space satisfying HrF=aHF+b with a0, b>0, where HF and HrF are, respectively, the anisotropic mean curvature and anisotropic r-th mean curvature associated with the function F:Sn?R+. Further, we show that if the L2-norm of HrF-aHF-b is sufficiently close to 0, then the hypersurface is close to the Wulff shape for the W-2,W-2-norm.
引用
收藏
页码:213 / 224
页数:12
相关论文
共 50 条
  • [1] On compact anisotropic Weingarten hypersurfaces in Euclidean space
    Julien Roth
    Abhitosh Upadhyay
    Archiv der Mathematik, 2019, 113 : 213 - 224
  • [2] Linear Weingarten λ-biharmonic hypersurfaces in Euclidean space
    Yang, Dan
    Zhang, Jingjing
    Fu, Yu
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2020, 199 (04) : 1533 - 1546
  • [3] Remarks on complete Weingarten hypersurfaces in the Euclidean space
    de Lima, Eudes
    PORTUGALIAE MATHEMATICA, 2025, 82 (1-2) : 139 - 153
  • [4] Some classifications of Weingarten translation hypersurfaces in Euclidean space
    Yang, Dan
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2018, 61 (01): : 107 - 115
  • [5] Compact hypersurfaces in a Euclidean space
    Deshmukh, S
    QUARTERLY JOURNAL OF MATHEMATICS, 1998, 49 (193): : 35 - 41
  • [6] STABILITY OF GENERALIZED LINEAR WEINGARTEN HYPERSURFACES IMMERSED IN THE EUCLIDEAN SPACE
    da Silva, Jonathan F.
    de Lima, Henrique F.
    Velasquez, Marco Antonio L.
    PUBLICACIONS MATEMATIQUES, 2018, 62 (01) : 95 - 111
  • [7] A Note on compact hypersurfaces in a Euclidean space
    Deshmukh, Sharief
    COMPTES RENDUS MATHEMATIQUE, 2012, 350 (21-22) : 971 - 974
  • [8] Compact hypersurfaces in euclidean space and some inequalities
    Bektas, M.
    Ergut, M.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2006, 30 (A3): : 285 - 289
  • [9] Weingarten hypersurfaces of the spherical type in Euclidean spaces
    Machado, Cid D. F.
    Riveros, Carlos M. C.
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2020, 61 (02): : 213 - 236
  • [10] MINIMAL DISKS AND COMPACT HYPERSURFACES IN EUCLIDEAN-SPACE
    MOORE, JD
    SCHULTE, T
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 94 (02) : 321 - 328