EXTENDED NORMAL VECTOR FIELD AND THE WEINGARTEN MAP ON HYPERSURFACES

被引:0
|
作者
Duduchava, Roland [1 ]
Kapanadze, David [1 ]
机构
[1] A Razmadze Math Inst, GE-0193 Tbilisi, Georgia
基金
美国国家科学基金会;
关键词
Hypersurface; shape operator; Weingarten map; Gunter's derivative; Gauss's curvature; mean curvature;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a different method for studying the Weingarten map for a hypersurface in the Euclidean space R-n. Applying the Cartesian coordinates of the ambient space and tangential Gunter's derivatives we obtain a simple matrix representation formula for the Weingarten map for implicit hypersurfaces, which can be applied, for example, to calculate the mean and Gauss's curvatures without passing to intrinsic coordinates.
引用
收藏
页码:485 / 500
页数:16
相关论文
共 50 条
  • [22] LINEAR WEINGARTEN HYPERSURFACES IN A REAL SPACE FORM
    Shu, Shichang
    GLASGOW MATHEMATICAL JOURNAL, 2010, 52 : 635 - 648
  • [23] On the geometry of linear Weingarten hypersurfaces in the hyperbolic space
    Cicero P. Aquino
    Henrique F. de Lima
    Monatshefte für Mathematik, 2013, 171 : 259 - 268
  • [24] Linear Weingarten hypersurfaces in locally symmetric manifolds
    Chao, Xiaoli
    Wang, Peijun
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2014, 19 (02): : 50 - 59
  • [25] Weingarten hypersurfaces of the spherical type in Euclidean spaces
    Machado, Cid D. F.
    Riveros, Carlos M. C.
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2020, 61 (02): : 213 - 236
  • [26] On compact anisotropic Weingarten hypersurfaces in Euclidean space
    Julien Roth
    Abhitosh Upadhyay
    Archiv der Mathematik, 2019, 113 : 213 - 224
  • [27] LINEAR WEINGARTEN HYPERSURFACES IN RIEMANNIAN SPACE FORMS
    Chao, Xiaoli
    Wang, Peijun
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (02) : 567 - 577
  • [28] Linear Weingarten λ-biharmonic hypersurfaces in Euclidean space
    Yang, Dan
    Zhang, Jingjing
    Fu, Yu
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2020, 199 (04) : 1533 - 1546
  • [29] Ruled Weingarten hypersurfaces in Sn+1
    Asperti, Antonio C.
    Valerio, Barbara C.
    ADVANCES IN GEOMETRY, 2008, 8 (01) : 1 - 10
  • [30] The Dirichlet problem for Weingarten hypersurfaces in Lorentz manifolds
    Oliver C. Schnürer
    Mathematische Zeitschrift, 2002, 242 : 159 - 181