Parameter Estimation in Hidden Markov Models With Intractable Likelihoods Using Sequential Monte Carlo

被引:11
|
作者
Yildirim, Sinan [1 ]
Singh, Sumeetpal S. [2 ]
Dean, Thomas [3 ]
Jasra, Ajay [4 ]
机构
[1] Univ Bristol, Sch Math, Bristol BS8 1TH, Avon, England
[2] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
[3] Darktrace, Cambridge CB3 0FA, England
[4] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore 119077, Singapore
基金
英国工程与自然科学研究理事会;
关键词
Approximate Bayesian computation; Maximum likelihood estimation; STOCHASTIC VOLATILITY; PARTICLE FILTER;
D O I
10.1080/10618600.2014.938811
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose sequential Monte Carlo-based algorithms for maximum likelihood estimation of the static parameters in hidden Markov models with an intractable likelihood using ideas from approximate Bayesian computation. The static parameter estimation algorithms are gradient-based and cover both offline and online estimation. We demonstrate their performance by estimating the parameters of three intractable models, namely the alpha-stable distribution, g-and-k distribution, and the stochastic volatility model with alpha-stable returns, using both real and synthetic data.
引用
收藏
页码:846 / 865
页数:20
相关论文
共 50 条
  • [31] Sequential Monte Carlo smoothing with application to parameter estimation in nonlinear state space models
    Olsson, Jimmy
    Cappe, Olivier
    Douc, Randal
    Moulines, Eric
    BERNOULLI, 2008, 14 (01) : 155 - 179
  • [32] Bayesian automatic parameter estimation of Threshold Autoregressive (TAR) models using Markov Chain Monte Carlo (MCMC)
    Amiri, E
    COMPSTAT 2002: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2002, : 189 - 194
  • [33] Parameter estimation from big data using a sequential monte carlo sampler
    Green, P. L.
    Maskell, S.
    PROCEEDINGS OF ISMA2016 INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING AND USD2016 INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS, 2016, : 4111 - 4119
  • [34] Parameter estimation in pair-hidden Markov models
    Arribas-Gil, Ana
    Gassiat, Elisabeth
    Matias, Catherine
    SCANDINAVIAN JOURNAL OF STATISTICS, 2006, 33 (04) : 651 - 671
  • [35] Monte Carlo Markov Chain parameter estimation in semi-analytic models of galaxy formation
    Henriques, Bruno M. B.
    Thomas, Peter A.
    Oliver, Seb
    Roseboom, Isaac
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 396 (01) : 535 - 547
  • [36] EM versus Markov chain Monte Carlo for Estimation of Hidden Markov Models: A Computational Perspective Comment on article by Ryden
    Smyth, Padhraic
    Kirshner, Sergey
    BAYESIAN ANALYSIS, 2008, 3 (04): : 699 - 705
  • [37] Probabilistic parameter estimation of activated sludge processes using Markov Chain Monte Carlo
    Sharifi, Soroosh
    Murthy, Sudhir
    Takacs, Imre
    Massoudieh, Arash
    WATER RESEARCH, 2014, 50 : 254 - 266
  • [38] CIGALEMC: GALAXY PARAMETER ESTIMATION USING A MARKOV CHAIN MONTE CARLO APPROACH WITH CIGALE
    Serra, Paolo
    Amblard, Alexandre
    Temi, Pasquale
    Burgarella, Denis
    Giovannoli, Elodie
    Buat, Veronique
    Noll, Stefan
    Im, Stephen
    ASTROPHYSICAL JOURNAL, 2011, 740 (01):
  • [39] Parameter Estimation of an Electrohydraulic Servo System Using a Markov Chain Monte Carlo Method
    Liu, Junhong
    Wu, Huapeng
    Handroos, Heikki
    Haario, Heikki
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2013, 135 (01):
  • [40] Bayesian filtering for hidden Markov models via Monte Carlo methods
    Doucet, A
    Andrieu, C
    Fitzgerald, W
    NEURAL NETWORKS FOR SIGNAL PROCESSING VIII, 1998, : 194 - 203