Bayesian automatic parameter estimation of Threshold Autoregressive (TAR) models using Markov Chain Monte Carlo (MCMC)

被引:0
|
作者
Amiri, E [1 ]
机构
[1] Imam Khomeini Int Univ, Dept Math & Stat, Ghazvin, Iran
来源
COMPSTAT 2002: PROCEEDINGS IN COMPUTATIONAL STATISTICS | 2002年
关键词
non linear time series; Threshold Autoregressive models; Marikov Chain Monte Carlo (MCMC); Gibbs Sampler;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In nonlinear time series analysis a Threshold Autoregressive model (TAR) is considered as an approximation to a Nonlinear autoregressive process(NLAR). A TAR model is a piece-wise linear model over the state space. It is linear in the space of the thresholds. In this article we confine our studies to a class of TAR models which is called Self-Exciting Threshold Autoregressive (SETAR). The first step in fitting a SETAR model to. a data-set is to decide the number of regimes. The second step is to identify the delay, the threshold(thresholds) and the order of each regime. Our approach is to estimate automatically, the number of regimes, the delay, the threshold (thresholds), the order and parameters of each regime for this class of threshold models via a Bayesian approach using MCMC methods. Model selection is done through calculating mean of the root mean square error (MRMSE) of forecasts.
引用
收藏
页码:189 / 194
页数:6
相关论文
共 50 条
  • [1] Bayesian estimation of an autoregressive model using Markov chain Monte Carlo
    Barnett, G
    Kohn, R
    Sheather, S
    JOURNAL OF ECONOMETRICS, 1996, 74 (02) : 237 - 254
  • [2] Parameter estimation in deformable models using Markov chain Monte Carlo
    Chalana, V
    Haynor, DR
    Sampson, PD
    Kim, YM
    IMAGE PROCESSING - MEDICAL IMAGING 1997, PTS 1 AND 2, 1997, 3034 : 287 - 298
  • [3] Markov Chain Monte Carlo (MCMC) Method for Parameter Estimation of Nonlinear Dynamical Systems
    Rehman, M. Javvad Ur
    Dass, Sarat Chandra
    Asirvadam, Vijanth Sagayan
    2015 IEEE INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING APPLICATIONS (ICSIPA), 2015, : 7 - 10
  • [4] Structural physical parameter identification using Bayesian estimation with Markov Chain Monte Carlo method
    Li, Xiao-Hua
    Xie, Li-Li
    Gong, Mao-Sheng
    Zhendong yu Chongji/Journal of Vibration and Shock, 2010, 29 (04): : 59 - 63
  • [5] Markov Chain Monte Carlo (MCMC) methods for parameter estimation of a novel hybrid redundant robot
    Wang, Yongbo
    Wu, Huapeng
    Handroos, Heikki
    FUSION ENGINEERING AND DESIGN, 2011, 86 (9-11) : 1863 - 1867
  • [6] Bayesian estimation of NIG models via Markov chain Monte Carlo methods
    Karlis, D
    Lillestöl, J
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2004, 20 (04) : 323 - 338
  • [7] On the Markov Chain Monte Carlo (MCMC) method
    Rajeeva L. Karandikar
    Sadhana, 2006, 31 : 81 - 104
  • [8] A primer for data assimilation with ecological models using Markov Chain Monte Carlo (MCMC)
    Zobitz, J. M.
    Desai, A. R.
    Moore, D. J. P.
    Chadwick, M. A.
    OECOLOGIA, 2011, 167 (03) : 599 - 611
  • [9] Seismic parameter estimation using Markov Chain Monte Carlo Method
    Zhang, Guang-Zhi
    Wang, Dan-Yang
    Yin, Xing-Yao
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2011, 46 (04): : 605 - 609
  • [10] A primer for data assimilation with ecological models using Markov Chain Monte Carlo (MCMC)
    J. M. Zobitz
    A. R. Desai
    D. J. P. Moore
    M. A. Chadwick
    Oecologia, 2011, 167 : 599 - 611