A new solvable complex PT-symmetric potential

被引:9
|
作者
Ahmed, Zafar [1 ]
Ghosh, Dona [2 ]
Nathan, Joseph Amal [3 ]
机构
[1] Bhabha Atom Res Ctr, Div Nucl Phys, Bombay 400085, Maharashtra, India
[2] Astavinayak Soc, Vashi 400703, Navi Mumbai, India
[3] Bhabha Atom Res Ctr, Reactor Phys Design Div, Bombay 400085, Maharashtra, India
关键词
NON-HERMITIAN HAMILTONIANS; SPONTANEOUS BREAKDOWN; DISCRETE EIGENVALUES; REAL; SPECTRUM;
D O I
10.1016/j.physleta.2015.04.032
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a new solvable one-dimensional complex PT-symmetric potential as V (x) = ig sgn(x) vertical bar 1 - exp(2 vertical bar x vertical bar/a)vertical bar and study the spectrum of H = d(2)/dx(2) + V (x). For smaller values of a, g < 1, there is a finite number of real discrete eigenvalues. As a and g increase, there exist exceptional points (EPs), (for fixed values of a), causing a scarcity of real discrete eigenvalues, but there exists at least one. We also show these real discrete eigenvalues as poles of reflection coefficient. We find that the energy-eigenstates Psi(n)(x) satisfy (1): PT Psi(n)(x) = 1 Psi(n) (x) and (2): PT Psi E-n(n) (x) = Psi E-n* (x), for real and complex energy eigenvalues, respectively. (C) 2015 Published by Elsevier B.V.
引用
收藏
页码:1639 / 1642
页数:4
相关论文
共 50 条
  • [1] A completely solvable new PT-symmetric periodic potential with real energies
    Sinha, Anjana
    Roychoudhury, Rajkumar
    PRAMANA-JOURNAL OF PHYSICS, 2023, 97 (03):
  • [2] Algebraic and scattering aspects of a PT-symmetric solvable potential
    Lévai, G
    Cannata, F
    Ventura, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (04): : 839 - 844
  • [3] Solvable PT-symmetric Hamiltonians
    M. Znojil
    Physics of Atomic Nuclei, 2002, 65 : 1149 - 1151
  • [4] Solvable PT-symmetric Hamiltonians
    Znojil, M
    PHYSICS OF ATOMIC NUCLEI, 2002, 65 (06) : 1149 - 1151
  • [5] THE LINEAR PT-SYMMETRIC COMPLEX POTENTIAL
    Lombard, R. J.
    Mezhoud, R.
    ROMANIAN JOURNAL OF PHYSICS, 2017, 62 (5-6):
  • [6] Handedness of complex PT-symmetric potential barriers
    Ahmed, Z
    PHYSICS LETTERS A, 2004, 324 (2-3) : 152 - 158
  • [7] Asymptotic Properties of Solvable PT-Symmetric Potentials
    Levai, Geza
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (04) : 997 - 1004
  • [8] Solvable PT-symmetric potentials in higher dimensions
    Levai, G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (15) : F273 - F280
  • [9] Solvable PT-symmetric potentials in 2 and 3 dimensions
    Levai, Geza
    5TH INTERNATIONAL SYMPOSIUM ON QUANTUM THEORY AND SYMMETRIES QTS5, 2008, 128
  • [10] Exactly solvable PT-symmetric models in two dimensions
    Agarwal, Kaustubh S.
    Pathak, Rajeev K.
    Joglekar, Yogesh N.
    EPL, 2015, 112 (03)