共 50 条
A new solvable complex PT-symmetric potential
被引:9
|作者:
Ahmed, Zafar
[1
]
Ghosh, Dona
[2
]
Nathan, Joseph Amal
[3
]
机构:
[1] Bhabha Atom Res Ctr, Div Nucl Phys, Bombay 400085, Maharashtra, India
[2] Astavinayak Soc, Vashi 400703, Navi Mumbai, India
[3] Bhabha Atom Res Ctr, Reactor Phys Design Div, Bombay 400085, Maharashtra, India
关键词:
NON-HERMITIAN HAMILTONIANS;
SPONTANEOUS BREAKDOWN;
DISCRETE EIGENVALUES;
REAL;
SPECTRUM;
D O I:
10.1016/j.physleta.2015.04.032
中图分类号:
O4 [物理学];
学科分类号:
0702 ;
摘要:
We propose a new solvable one-dimensional complex PT-symmetric potential as V (x) = ig sgn(x) vertical bar 1 - exp(2 vertical bar x vertical bar/a)vertical bar and study the spectrum of H = d(2)/dx(2) + V (x). For smaller values of a, g < 1, there is a finite number of real discrete eigenvalues. As a and g increase, there exist exceptional points (EPs), (for fixed values of a), causing a scarcity of real discrete eigenvalues, but there exists at least one. We also show these real discrete eigenvalues as poles of reflection coefficient. We find that the energy-eigenstates Psi(n)(x) satisfy (1): PT Psi(n)(x) = 1 Psi(n) (x) and (2): PT Psi E-n(n) (x) = Psi E-n* (x), for real and complex energy eigenvalues, respectively. (C) 2015 Published by Elsevier B.V.
引用
收藏
页码:1639 / 1642
页数:4
相关论文