A new solvable complex PT-symmetric potential

被引:9
|
作者
Ahmed, Zafar [1 ]
Ghosh, Dona [2 ]
Nathan, Joseph Amal [3 ]
机构
[1] Bhabha Atom Res Ctr, Div Nucl Phys, Bombay 400085, Maharashtra, India
[2] Astavinayak Soc, Vashi 400703, Navi Mumbai, India
[3] Bhabha Atom Res Ctr, Reactor Phys Design Div, Bombay 400085, Maharashtra, India
关键词
NON-HERMITIAN HAMILTONIANS; SPONTANEOUS BREAKDOWN; DISCRETE EIGENVALUES; REAL; SPECTRUM;
D O I
10.1016/j.physleta.2015.04.032
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a new solvable one-dimensional complex PT-symmetric potential as V (x) = ig sgn(x) vertical bar 1 - exp(2 vertical bar x vertical bar/a)vertical bar and study the spectrum of H = d(2)/dx(2) + V (x). For smaller values of a, g < 1, there is a finite number of real discrete eigenvalues. As a and g increase, there exist exceptional points (EPs), (for fixed values of a), causing a scarcity of real discrete eigenvalues, but there exists at least one. We also show these real discrete eigenvalues as poles of reflection coefficient. We find that the energy-eigenstates Psi(n)(x) satisfy (1): PT Psi(n)(x) = 1 Psi(n) (x) and (2): PT Psi E-n(n) (x) = Psi E-n* (x), for real and complex energy eigenvalues, respectively. (C) 2015 Published by Elsevier B.V.
引用
收藏
页码:1639 / 1642
页数:4
相关论文
共 50 条
  • [41] Reciprocity and unitarity in scattering from a non-Hermitian complex PT-symmetric potential
    Ahmed, Zafar
    PHYSICS LETTERS A, 2013, 377 (13) : 957 - 959
  • [42] Various scattering properties of a new PT-symmetric non-Hermitian potential
    Ghatak, Ananya
    Mandal, Raka Dona Ray
    Mandal, Bhabani Prasad
    ANNALS OF PHYSICS, 2013, 336 : 540 - 552
  • [43] Soliton dynamics and stability in the ABS spinor model with a PT-symmetric periodic complex potential
    Mertens, Franz G.
    Sanchez-Rey, Bernardo
    Quintero, Niurka R.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (14)
  • [44] Effective potential for PT-symmetric quantum field theories
    Bender, CM
    Jones, HF
    FOUNDATIONS OF PHYSICS, 2000, 30 (03) : 393 - 411
  • [45] PT-symmetric scatterers
    Miri, Mohammad-Ali
    Nye, Nicholas
    Khajavikhan, Mercedeh
    Christodoulides, Demetrios N.
    ACTIVE PHOTONIC MATERIALS VII, 2015, 9546
  • [46] Nonlinear tunnelling of spatial solitons in PT-symmetric potential
    Xu, Yun-Jie
    Dai, Chao-Qing
    OPTICS COMMUNICATIONS, 2014, 318 : 112 - 119
  • [47] The spectrum of the Hamiltonian with a PT-symmetric periodic optical potential
    Veliev, O. A.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2018, 15 (01)
  • [48] On the Schrodinger operator with a periodic PT-symmetric matrix potential
    Veliev, O. A.
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (10)
  • [49] PT-symmetric electronics
    Schindler, J.
    Lin, Z.
    Lee, J. M.
    Ramezani, H.
    Ellis, F. M.
    Kottos, T.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (44)
  • [50] PT-Symmetric Acoustics
    Zhu, Xuefeng
    Ramezani, Hamidreza
    Shi, Chengzhi
    Zhu, Jie
    Zhang, Xiang
    PHYSICAL REVIEW X, 2014, 4 (03):