A new solvable complex PT-symmetric potential

被引:9
|
作者
Ahmed, Zafar [1 ]
Ghosh, Dona [2 ]
Nathan, Joseph Amal [3 ]
机构
[1] Bhabha Atom Res Ctr, Div Nucl Phys, Bombay 400085, Maharashtra, India
[2] Astavinayak Soc, Vashi 400703, Navi Mumbai, India
[3] Bhabha Atom Res Ctr, Reactor Phys Design Div, Bombay 400085, Maharashtra, India
关键词
NON-HERMITIAN HAMILTONIANS; SPONTANEOUS BREAKDOWN; DISCRETE EIGENVALUES; REAL; SPECTRUM;
D O I
10.1016/j.physleta.2015.04.032
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a new solvable one-dimensional complex PT-symmetric potential as V (x) = ig sgn(x) vertical bar 1 - exp(2 vertical bar x vertical bar/a)vertical bar and study the spectrum of H = d(2)/dx(2) + V (x). For smaller values of a, g < 1, there is a finite number of real discrete eigenvalues. As a and g increase, there exist exceptional points (EPs), (for fixed values of a), causing a scarcity of real discrete eigenvalues, but there exists at least one. We also show these real discrete eigenvalues as poles of reflection coefficient. We find that the energy-eigenstates Psi(n)(x) satisfy (1): PT Psi(n)(x) = 1 Psi(n) (x) and (2): PT Psi E-n(n) (x) = Psi E-n* (x), for real and complex energy eigenvalues, respectively. (C) 2015 Published by Elsevier B.V.
引用
收藏
页码:1639 / 1642
页数:4
相关论文
共 50 条
  • [21] Solvable dilation model of time-dependent PT-symmetric systems
    Huang, Minyi
    Lee, Ray-Kuang
    Wang, Qing-hai
    Zhang, Guo-Qiang
    Wu, Junde
    PHYSICAL REVIEW A, 2022, 105 (06)
  • [22] Complex PT-symmetric extensions of the non-PT-symmetric Burgers equation
    Yan, Zhenya
    PHYSICA SCRIPTA, 2008, 77 (02)
  • [23] The Generalized PT-Symmetric Sinh-Gordon Potential Solvable within Quantum Hamilton–Jacobi Formalism
    Özlem Yeşiltaş
    S. Bilge Ocak
    International Journal of Theoretical Physics, 2008, 47 : 415 - 420
  • [24] OBSERVABLES OF COMPLEX PT-SYMMETRIC "SHIFTED" POTENTIALS
    Lombard, R. J.
    Mezhoud, R.
    Yekken, R.
    ROMANIAN JOURNAL OF PHYSICS, 2020, 65 (3-4):
  • [25] The fractional dimensional spatiotemporal accessible solitons supported by PT-symmetric complex potential
    Zhong, Wei -Ping
    Belic, Milivoj
    Zhang, Yiqi
    ANNALS OF PHYSICS, 2017, 378 : 432 - 439
  • [26] Solitons in PT-symmetric potential with competing nonlinearity
    Khare, Avinash
    Al-Marzoug, S. M.
    Bahlouli, Hocine
    PHYSICS LETTERS A, 2012, 376 (45) : 2880 - 2886
  • [27] Nonlinear modes in the harmonic PT-symmetric potential
    Zezyulin, Dmitry A.
    Konotop, Vladimir V.
    PHYSICAL REVIEW A, 2012, 85 (04):
  • [28] The finite PT-symmetric square well potential
    Levai, Geza
    Kovacs, Jozsef
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (02)
  • [29] New exactly solvable isospectral partners for PT-symmetric potentials (vol 37, pg 2509, 2004)
    Sinha, A
    Roy, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (13): : 4147 - 4147
  • [30] Solvable simulation of a double-well problem in PT-symmetric quantum mechanics
    Znojil, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (27): : 7639 - 7648