GAUSSIAN RANDOM PARTICLES WITH FLEXIBLE HAUSDORFF DIMENSION

被引:0
|
作者
Hansen, Linda V. [1 ]
Thorarinsdotiir, Thordis L. [2 ]
Ovcharov, Evgeni [3 ]
Gneiting, Tilmann [3 ,4 ]
Richards, Donald [5 ]
机构
[1] Varde Coll, DK-6800 Varde, Denmark
[2] Norwegian Comp Ctr, Oslo, Norway
[3] Heidelberg Inst Theoret Studies, Heidelberg, Germany
[4] Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany
[5] Penn State Univ, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
Celestial body; correlation function; fractal dimension; Levy basis; random field on a sphere; simulation of star-shaped random set; POSITIVE-DEFINITE FUNCTIONS; STOCHASTIC-PROCESSES; TOPOGRAPHY; MODELS; VENUS; EARTH;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Gaussian particles provide a flexible framework for modelling and simulating three-dimensional star-shaped random sets. In our framework, the radial function of the particle arises from a kernel smoothing, and is associated with an isotropic random field on the sphere. If the kernel is a von Mises Fisher density, or uniform on a spherical cap, the correlation function of the associated random field admits a closed form expression. The Hausdorff dimension of the surface of the Gaussian particle reflects the decay of the correlation function at the origin, as quantified by the fractal index. Under power kernels we obtain particles with boundaries of any Hausdorff dimension between 2 and 3.
引用
收藏
页码:307 / 327
页数:21
相关论文
共 50 条
  • [1] HAUSDORFF DIMENSION OF GRAPH OF A GAUSSIAN RANDOM FIELD
    ZINCHENKO, NM
    MATHEMATICAL NOTES, 1977, 21 (1-2) : 72 - 74
  • [2] HAUSDORFF DIMENSION AND GAUSSIAN FIELDS
    ADLER, RJ
    ANNALS OF PROBABILITY, 1977, 5 (01): : 145 - 151
  • [3] Hitting probabilities and the Hausdorff dimension of the inverse images of anisotropic Gaussian random fields
    Bierme, Hermine
    Lacaux, Celine
    Xiao, Yimin
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2009, 41 : 253 - 273
  • [4] The Hausdorff dimension of multivariate operator-self-similar Gaussian random fields
    Soenmez, Ercan
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2018, 128 (02) : 426 - 444
  • [5] Hausdorff Measure and Uniform Dimension for Space-Time Anisotropic Gaussian Random Fields
    Yuan, Weijie
    Chen, Zhenlong
    JOURNAL OF THEORETICAL PROBABILITY, 2024, 37 (03) : 2304 - 2329
  • [6] Hausdorff dimension of a random invariant set
    Debussche, A
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1998, 77 (10): : 967 - 988
  • [7] Hausdorff dimension of random fractals with overlaps
    Yu, ZG
    Anh, VV
    Lau, KS
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 65 (02) : 315 - 328
  • [8] Hausdorff dimension of fermions on a random lattice
    Varrone, Mattia
    Barker, William E. V.
    NUCLEAR PHYSICS B, 2024, 999
  • [9] Hausdorff dimension of limsup random fractals
    Zhang, Liang
    ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18 : 1 - 26
  • [10] Hausdorff dimension of random limsup sets
    Ekstrom, Fredrik
    Persson, Tomas
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2018, 98 (03): : 661 - 686