GAUSSIAN RANDOM PARTICLES WITH FLEXIBLE HAUSDORFF DIMENSION

被引:0
|
作者
Hansen, Linda V. [1 ]
Thorarinsdotiir, Thordis L. [2 ]
Ovcharov, Evgeni [3 ]
Gneiting, Tilmann [3 ,4 ]
Richards, Donald [5 ]
机构
[1] Varde Coll, DK-6800 Varde, Denmark
[2] Norwegian Comp Ctr, Oslo, Norway
[3] Heidelberg Inst Theoret Studies, Heidelberg, Germany
[4] Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany
[5] Penn State Univ, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
Celestial body; correlation function; fractal dimension; Levy basis; random field on a sphere; simulation of star-shaped random set; POSITIVE-DEFINITE FUNCTIONS; STOCHASTIC-PROCESSES; TOPOGRAPHY; MODELS; VENUS; EARTH;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Gaussian particles provide a flexible framework for modelling and simulating three-dimensional star-shaped random sets. In our framework, the radial function of the particle arises from a kernel smoothing, and is associated with an isotropic random field on the sphere. If the kernel is a von Mises Fisher density, or uniform on a spherical cap, the correlation function of the associated random field admits a closed form expression. The Hausdorff dimension of the surface of the Gaussian particle reflects the decay of the correlation function at the origin, as quantified by the fractal index. Under power kernels we obtain particles with boundaries of any Hausdorff dimension between 2 and 3.
引用
收藏
页码:307 / 327
页数:21
相关论文
共 50 条
  • [21] GAUSSIAN SAMPLE FUNCTIONS AND HAUSDORFF DIMENSION OF LEVEL CROSSINGS
    OREY, S
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1970, 15 (03): : 249 - &
  • [22] Hausdorff dimension of affine random covering sets in torus
    Jarvenpaa, Esa
    Jarvenpaa, Maarit
    Koivusalo, Henna
    Li, Bing
    Suomala, Ville
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2014, 50 (04): : 1371 - 1384
  • [23] Random Noise Increases Kolmogorov Complexity and Hausdorff Dimension
    Posobin, Gleb
    Shen, Alexander
    36TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2019), 2019,
  • [25] The Hausdorff dimension of conformal repellers under random perturbation
    Bogenschütz, T
    Ochs, G
    NONLINEARITY, 1999, 12 (05) : 1323 - 1338
  • [26] The Hausdorff dimension of invariant measures for random dynamical systems
    Bielaczyc, Tomasz
    Horbacz, Katarzyna
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 391 (01) : 298 - 311
  • [27] Hausdorff Dimension of the Random Middle Third Cantor Set
    Pestana, Dinis D.
    Aleixo, Sandra M.
    Rocha, J. Leonel
    PROCEEDINGS OF THE ITI 2009 31ST INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY INTERFACES, 2009, : 279 - +
  • [28] Hausdorff dimension of invariant sets for random dynamical systems
    Crauel H.
    Flandoli F.
    Journal of Dynamics and Differential Equations, 1998, 10 (3) : 449 - 474
  • [29] Hausdorff measure of the sample paths of Gaussian random fields
    Xiao, YM
    OSAKA JOURNAL OF MATHEMATICS, 1996, 33 (04) : 895 - 913
  • [30] HAUSDORFF DIMENSION OF CERTAIN RANDOM SELF-AFFINE FRACTALS
    Luzia, Nuno
    STOCHASTICS AND DYNAMICS, 2011, 11 (04) : 627 - 642