GAUSSIAN RANDOM PARTICLES WITH FLEXIBLE HAUSDORFF DIMENSION

被引:0
|
作者
Hansen, Linda V. [1 ]
Thorarinsdotiir, Thordis L. [2 ]
Ovcharov, Evgeni [3 ]
Gneiting, Tilmann [3 ,4 ]
Richards, Donald [5 ]
机构
[1] Varde Coll, DK-6800 Varde, Denmark
[2] Norwegian Comp Ctr, Oslo, Norway
[3] Heidelberg Inst Theoret Studies, Heidelberg, Germany
[4] Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany
[5] Penn State Univ, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
Celestial body; correlation function; fractal dimension; Levy basis; random field on a sphere; simulation of star-shaped random set; POSITIVE-DEFINITE FUNCTIONS; STOCHASTIC-PROCESSES; TOPOGRAPHY; MODELS; VENUS; EARTH;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Gaussian particles provide a flexible framework for modelling and simulating three-dimensional star-shaped random sets. In our framework, the radial function of the particle arises from a kernel smoothing, and is associated with an isotropic random field on the sphere. If the kernel is a von Mises Fisher density, or uniform on a spherical cap, the correlation function of the associated random field admits a closed form expression. The Hausdorff dimension of the surface of the Gaussian particle reflects the decay of the correlation function at the origin, as quantified by the fractal index. Under power kernels we obtain particles with boundaries of any Hausdorff dimension between 2 and 3.
引用
收藏
页码:307 / 327
页数:21
相关论文
共 50 条
  • [41] Uniform dimension results for Gaussian random fields
    DongSheng Wu
    YiMin Xiao
    Science in China Series A: Mathematics, 2009, 52 : 1478 - 1496
  • [42] Uniform dimension results for Gaussian random fields
    Wu DongSheng
    Xiao YiMin
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (07): : 1478 - 1496
  • [43] Light scattering by Gaussian random particles
    Muinonen, K
    EARTH MOON AND PLANETS, 1996, 72 (1-3): : 339 - 342
  • [44] CAPACITARY DIMENSION AND HAUSDORFF DIMENSION
    KAHANE, JP
    LECTURE NOTES IN MATHEMATICS, 1984, 1096 : 393 - 400
  • [45] HAUSDORFF DIMENSION OF LIMSUP SETS OF RANDOM RECTANGLES IN PRODUCTS OF REGULAR SPACES
    Ekstrom, Fredrik
    Jarvenpaa, Esa
    Jarvenpaa, Maarit
    Suomala, Ville
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (06) : 2509 - 2521
  • [46] THE HAUSDORFF DIMENSION OF THE TWO-DIMENSIONAL EDWARDS RANDOM-WALK
    KOUKIOU, F
    PASCHE, J
    PETRITIS, D
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (09): : 1385 - 1391
  • [47] Hausdorff dimension of certain sets related to random αβ-orbits which are not dense
    Peng, Liuqing
    Wu, Jun
    Xu, Jian
    JOURNAL OF NUMBER THEORY, 2024, 261 : 22 - 35
  • [48] On the construction, properties and Hausdorff dimension of random Cantor one pth set
    Kumari, Sudesh
    Chugh, Renu
    Cao, Jinde
    Huang, Chuangxia
    AIMS MATHEMATICS, 2020, 5 (04): : 3138 - 3155
  • [49] The Hausdorff dimension of a class of random self-similar fractal trees
    Croydon, D. A.
    ADVANCES IN APPLIED PROBABILITY, 2007, 39 (03) : 708 - 730
  • [50] Random series in powers of algebraic integers: Hausdorff dimension of the limit distribution
    Lalley, SP
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1998, 57 : 629 - 654