Fractional random fields;
Gaussian random fields;
Operator-self-similarity;
Modulus of continuity;
Hausdorff dimension;
FRACTIONAL BROWNIAN MOTIONS;
D O I:
10.1016/j.spa.2017.05.003
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
Let {X(t) : t is an element of R-d} be a multivariate operator-self-similar random field with values in R-m. Such fields were introduced in [22] and satisfy the scaling property {X(c(E)t) : t is an element of R-d} =(d) {c(D)X(t) : t is an element of R-d} for all c > 0, where E is a d x d real matrix and D is an m x m real matrix. We solve an open problem in [22] by calculating the Hausdorff dimension of the range and graph of a trajectory over the unit cube K = [0, 1](d) in the Gaussian case. In particular, we enlighten the property that the Hausdorff dimension is determined by the real parts of the eigenvalues of E and D as well as the multiplicity of the eigenvalues of E and D. (C) 2017 Elsevier B.V. All rights reserved.
机构:
Tulane Univ, Math Dept, 6823 St Charles Ave, New Orleans, LA 70118 USATulane Univ, Math Dept, 6823 St Charles Ave, New Orleans, LA 70118 USA
Didier, Gustavo
Meerschaert, Mark M.
论文数: 0引用数: 0
h-index: 0
机构:
Michigan State Univ, Dept Stat & Probabil, 619 Red Cedar Rd, E Lansing, MI 48824 USATulane Univ, Math Dept, 6823 St Charles Ave, New Orleans, LA 70118 USA
Meerschaert, Mark M.
Pipiras, Vladas
论文数: 0引用数: 0
h-index: 0
机构:
Univ N Carolina, Dept Stat & Operat Res, CB 3260,Hanes Hall, Chapel Hill, NC 27599 USATulane Univ, Math Dept, 6823 St Charles Ave, New Orleans, LA 70118 USA