Steady dark solitary flexural gravity waves

被引:14
|
作者
Milewski, Paul A. [1 ]
Vanden-Broeck, Jean-Marc [2 ]
Wang, Zhan [3 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[2] UCL, Dept Math, London WC1E 6BT, England
[3] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
dark solitary waves; water waves; flexural gravity waves; WATER-WAVES; FIBERS;
D O I
10.1098/rspa.2012.0485
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The nonlinear Schrodinger (NLS) equation describes the modulational limit of many surface water wave problems. Dark solitary waves of the NLS equation asymptote to a constant in the far field and have a localized decrease to zero amplitude at the origin, corresponding to water wave solutions that asymptote to a uniform periodic Stokes wave in the far field and decreasing oscillations near the origin. It is natural to ask whether these dark solitary waves can be found in the irrotational Euler equations. In this paper, we find such solutions in the context of flexural-gravity waves, which are often used as a model for waves in ice-covered water. This is a situation in which the NLS equation predicts steadily travelling dark solitons. The solution branches of dark solitons are continued, and one branch leads to fully localized solutions at large amplitudes.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] A note on steady gravity waves with vorticity
    Wahlén, E
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2005, 2005 (07) : 389 - 396
  • [22] Steady dark solitary waves emerging from wave-generated meanflow: The role of modulation equations
    Bridges, TJ
    [J]. CHAOS, 2005, 15 (03)
  • [23] GRAVITY SOLITARY WAVES BY MINIMIZATION: AN UNCOUNTABLE FAMILY
    Buffoni, Boris
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2009, 34 (02) : 339 - 352
  • [24] CAPILLARY-GRAVITY PERIODIC AND SOLITARY WAVES
    DIAS, F
    [J]. PHYSICS OF FLUIDS, 1994, 6 (07) : 2239 - 2241
  • [25] Forced gravity-capillary solitary waves
    Parau, E
    Dias, F
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (08): : 655 - 660
  • [26] On asymmetric gravity-capillary solitary waves
    Yang, TS
    Akylas, TR
    [J]. JOURNAL OF FLUID MECHANICS, 1997, 330 : 215 - 232
  • [27] Transverse instability of gravity–capillary solitary waves
    Boguk Kim
    T. R. Akylas
    [J]. Journal of Engineering Mathematics, 2007, 58 : 167 - 175
  • [28] Spatiotemporal optical dark X solitary waves
    Baronio, Fabio
    Chen, Shihua
    Onorato, Miguel
    Trillo, Stefano
    Wabnitz, Stefan
    Kodama, Yuji
    [J]. OPTICS LETTERS, 2016, 41 (23) : 5571 - 5574
  • [29] Femtosecond dark solitary waves in optic fibres
    Quan, Hongjun
    [J]. Acta Metallurgica Sinica (English Edition), Series A: Physical Metallurgy & Materials Science, 1996, 9 (04): : 163 - 166
  • [30] Nonlinear interaction of ring dark solitary waves with coaxial dark beams
    Dreischuh, A
    Neshev, D
    Chervenkov, S
    Paulus, GG
    Grasbon, F
    Walther, H
    [J]. 11TH INTERNATIONAL SCHOOL ON QUANTUM ELECTRONICS: LASER PHYSICS AND APPLICATIONS, 2001, 4397 : 191 - 195