Steady dark solitary flexural gravity waves

被引:14
|
作者
Milewski, Paul A. [1 ]
Vanden-Broeck, Jean-Marc [2 ]
Wang, Zhan [3 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[2] UCL, Dept Math, London WC1E 6BT, England
[3] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
dark solitary waves; water waves; flexural gravity waves; WATER-WAVES; FIBERS;
D O I
10.1098/rspa.2012.0485
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The nonlinear Schrodinger (NLS) equation describes the modulational limit of many surface water wave problems. Dark solitary waves of the NLS equation asymptote to a constant in the far field and have a localized decrease to zero amplitude at the origin, corresponding to water wave solutions that asymptote to a uniform periodic Stokes wave in the far field and decreasing oscillations near the origin. It is natural to ask whether these dark solitary waves can be found in the irrotational Euler equations. In this paper, we find such solutions in the context of flexural-gravity waves, which are often used as a model for waves in ice-covered water. This is a situation in which the NLS equation predicts steadily travelling dark solitons. The solution branches of dark solitons are continued, and one branch leads to fully localized solutions at large amplitudes.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Excitation of Nonlinear Solitary Flexural Waves in a Moving Domain Wall
    Ekomasov, E. G.
    Azamatov, Sh. A.
    Murtazin, R. R.
    [J]. PHYSICS OF METALS AND METALLOGRAPHY, 2009, 108 (06): : 532 - 537
  • [42] Solitary flexural waves on a supersonic domain wall in yttrium orthoferrite
    M. V. Chetkin
    Yu. N. Kurbatova
    V. N. Filatov
    [J]. Journal of Experimental and Theoretical Physics Letters, 1997, 65 : 797 - 803
  • [43] Steady gravity waves due to a submerged source
    Lustri, Christopher J.
    Chapman, S. Jonathan
    [J]. JOURNAL OF FLUID MECHANICS, 2013, 732 : 660 - 686
  • [44] Excitation of nonlinear solitary flexural waves in a moving domain wall
    E. G. Ekomasov
    Sh. A. Azamatov
    R. R. Murtazin
    [J]. The Physics of Metals and Metallography, 2009, 108 : 532 - 537
  • [45] Steady nonsymmetrical gravity waves with shear in water
    Baumstein, AI
    [J]. STUDIES IN APPLIED MATHEMATICS, 1999, 102 (03) : 267 - 290
  • [46] On the Lagrangian description of steady surface gravity waves
    Clamond, Didier
    [J]. JOURNAL OF FLUID MECHANICS, 2007, 589 : 433 - 454
  • [47] Steady Solitary and Periodic Waves in a Nonlinear Nonintegrable Lattice
    Andrianov, Igor
    Zemlyanukhin, Aleksandr
    Bochkarev, Andrey
    Erofeev, Vladimir
    [J]. SYMMETRY-BASEL, 2020, 12 (10): : 1 - 17
  • [48] Steady solution of the velocity field of steep solitary waves
    Duan, W. Y.
    Wang, Z.
    Zhao, B. B.
    Ertekin, R. C.
    Kim, J. W.
    [J]. APPLIED OCEAN RESEARCH, 2018, 73 : 70 - 79
  • [49] Gap solitary wave coexisting with bistable steady waves
    He, KF
    Zhou, LQ
    [J]. PHYSICS LETTERS A, 1997, 231 (1-2) : 65 - 74
  • [50] Dark matter gravity waves at LIGO and LISA
    Frampton, Paul H.
    [J]. MODERN PHYSICS LETTERS A, 2019, 34 (16)