Spatiotemporal optical dark X solitary waves

被引:27
|
作者
Baronio, Fabio [1 ,2 ]
Chen, Shihua [3 ]
Onorato, Miguel [4 ,5 ]
Trillo, Stefano [6 ]
Wabnitz, Stefan [1 ,2 ]
Kodama, Yuji [7 ]
机构
[1] Univ Brescia, INO CNR, Via Branze 38, I-25123 Brescia, Italy
[2] Univ Brescia, Dipartimento Ingn Informaz, Via Branze 38, I-25123 Brescia, Italy
[3] Southeast Univ, Dept Phys, Nanjing 211189, Jiangsu, Peoples R China
[4] Univ Turin, Dipartimento Fis, Via P Giuria 1, I-10125 Turin, Italy
[5] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy
[6] Univ Ferrara, Dipartimento Ingn, Via Saragat 1, I-44122 Ferrara, Italy
[7] Ohio State Univ, Dept Math, 231 W 18th Ave, Columbus, OH 43210 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
EQUATION; MEDIA; PROPAGATION; STABILITY; SOLITONS;
D O I
10.1364/OL.41.005571
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We introduce spatiotemporal optical dark X solitary waves of the (2 + 1) D hyperbolic nonlinear Schrodinger equation (NLSE), which rules wave propagation in a self-focusing and normally dispersive medium. These analytical solutions are derived by exploiting the connection between the NLSE and a well-known equation of hydrodynamics, namely the type II Kadomtsev-Petviashvili (KP-II) equation. As a result, families of shallow water X soliton solutions of the KP-II equation are mapped into optical dark X solitary wave solutions of the NLSE. Numerical simulations show that optical dark X solitary waves may propagate for long distances (tens of nonlinear lengths) before they eventually break up, owing to the modulation instability of the continuous wave background. This finding opens a novel path for the excitation and control of X solitary waves in nonlinear optics. (C) 2016 Optical Society of America
引用
收藏
页码:5571 / 5574
页数:4
相关论文
共 50 条
  • [1] Dark spatiotemporal optical solitary waves in self-defocusing nonlinear media
    Wei-Ping Zhong
    Milivoj R. Belić
    Yiqi Zhang
    [J]. Nonlinear Dynamics, 2017, 87 : 2171 - 2177
  • [2] Dark spatiotemporal optical solitary waves in self-defocusing nonlinear media
    Zhong, Wei-Ping
    Belic, Milivoj R.
    Zhang, Yiqi
    [J]. NONLINEAR DYNAMICS, 2017, 87 (04) : 2171 - 2177
  • [3] DARK SOLITARY WAVES IN OPTICAL FIBERS
    CHRISTODOULIDES, DN
    JOSEPH, RI
    [J]. OPTICS LETTERS, 1984, 9 (09) : 408 - 410
  • [4] Optical Kerr spatiotemporal dark extreme waves
    Wabnitz, Stefan
    Kodama, Yuji
    Baronio, Fabio
    [J]. REAL-TIME MEASUREMENTS, ROGUE PHENOMENA, AND SINGLE-SHOT APPLICATIONS III, 2018, 10517
  • [5] Spatiotemporal optical solitons, breathers, lumps and solitary waves of
    Li, Lingfei
    Yan, Yongsheng
    Xie, Yingying
    [J]. OPTIK, 2021, 246
  • [6] Bright and dark solitary waves in both dispersion regions of an optical fibre
    Palacios, SL
    Fernández-Díaz, JM
    Guinea, A
    [J]. JOURNAL OF MODERN OPTICS, 2000, 47 (04) : 711 - 717
  • [7] Intermode interactions of dark solitary waves
    Kim, GH
    Moon, HJ
    Lee, JH
    Chang, JS
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1997, 30 (03) : 540 - 543
  • [8] POLARIZATION INSTABILITIES OF DARK AND BRIGHT COUPLED SOLITARY WAVES IN BIREFRINGENT OPTICAL FIBERS
    WABNITZ, S
    WRIGHT, EM
    STEGEMAN, GI
    [J]. PHYSICAL REVIEW A, 1990, 41 (11): : 6415 - 6424
  • [9] Emergence of X-shaped spatiotemporal coherence in optical waves
    Jedrkiewicz, O.
    Picozzi, A.
    Clerici, M.
    Faccio, D.
    Di Trapani, P.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (24)
  • [10] Self-similar spatiotemporal solitary waves in Bessel-Hermite optical lattices
    Xu Si-Liu
    Liang Jian-Chu
    Li Zhong-Ming
    [J]. CHINESE PHYSICS B, 2011, 20 (11)