Spatiotemporal optical dark X solitary waves

被引:27
|
作者
Baronio, Fabio [1 ,2 ]
Chen, Shihua [3 ]
Onorato, Miguel [4 ,5 ]
Trillo, Stefano [6 ]
Wabnitz, Stefan [1 ,2 ]
Kodama, Yuji [7 ]
机构
[1] Univ Brescia, INO CNR, Via Branze 38, I-25123 Brescia, Italy
[2] Univ Brescia, Dipartimento Ingn Informaz, Via Branze 38, I-25123 Brescia, Italy
[3] Southeast Univ, Dept Phys, Nanjing 211189, Jiangsu, Peoples R China
[4] Univ Turin, Dipartimento Fis, Via P Giuria 1, I-10125 Turin, Italy
[5] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy
[6] Univ Ferrara, Dipartimento Ingn, Via Saragat 1, I-44122 Ferrara, Italy
[7] Ohio State Univ, Dept Math, 231 W 18th Ave, Columbus, OH 43210 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
EQUATION; MEDIA; PROPAGATION; STABILITY; SOLITONS;
D O I
10.1364/OL.41.005571
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We introduce spatiotemporal optical dark X solitary waves of the (2 + 1) D hyperbolic nonlinear Schrodinger equation (NLSE), which rules wave propagation in a self-focusing and normally dispersive medium. These analytical solutions are derived by exploiting the connection between the NLSE and a well-known equation of hydrodynamics, namely the type II Kadomtsev-Petviashvili (KP-II) equation. As a result, families of shallow water X soliton solutions of the KP-II equation are mapped into optical dark X solitary wave solutions of the NLSE. Numerical simulations show that optical dark X solitary waves may propagate for long distances (tens of nonlinear lengths) before they eventually break up, owing to the modulation instability of the continuous wave background. This finding opens a novel path for the excitation and control of X solitary waves in nonlinear optics. (C) 2016 Optical Society of America
引用
收藏
页码:5571 / 5574
页数:4
相关论文
共 50 条
  • [41] BRIGHT AND DARK LATTICE SOLITARY WAVES IN A DISCRETE NONLINEAR-SYSTEM
    XIAO, Y
    [J]. PHYSICS LETTERS A, 1994, 193 (5-6) : 419 - 424
  • [42] DARK SOLITARY WAVES IN A GENERALIZED VERSION OF THE NONLINEAR SCHRODINGER-EQUATION
    BASS, FG
    KONOTOP, VV
    PUZENKO, SA
    [J]. PHYSICAL REVIEW A, 1992, 46 (07): : 4185 - 4191
  • [43] Envelope solitary waves and dark solitons at a water-ice interface
    Il'ichev, A. T.
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2015, 289 (01) : 152 - 166
  • [44] Bright and dark solitary waves in the presence of third-harmonic generation
    Sammut, RA
    Buryak, AV
    Kivshar, YS
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1998, 15 (05) : 1488 - 1496
  • [45] Envelope solitary waves and dark solitons at a water-ice interface
    A. T. Il’ichev
    [J]. Proceedings of the Steklov Institute of Mathematics, 2015, 289 : 152 - 166
  • [46] GRAY AND DARK SPATIAL SOLITARY WAVES IN SLAB WAVE-GUIDES
    CHEN, YJ
    TRAN, HT
    [J]. OPTICS LETTERS, 1992, 17 (08) : 580 - 582
  • [47] Spatiotemporal variations of parameters of internal solitary waves in the northern South China Sea
    Yu’ang Liu
    Yifei Jiang
    Xiaojiang Zhang
    Zhiyuan Wang
    Yu Cao
    Huizan Wang
    [J]. Journal of Oceanology and Limnology, 2024, 42 : 421 - 438
  • [48] Spatiotemporal variations of parameters of internal solitary waves in the northern South China Sea
    Yu’ang LIU
    Yifei JIANG
    Xiaojiang ZHANG
    Zhiyuan WANG
    Yu CAO
    [J]. Journal of Oceanology and Limnology, 2024, 42 (02) : 421 - 438
  • [49] Spatiotemporal variations of parameters of internal solitary waves in the northern South China Sea
    Liu, Yu'ang
    Jiang, Yifei
    Zhang, Xiaojiang
    Wang, Zhiyuan
    Cao, Yu
    Wang, Huizan
    [J]. JOURNAL OF OCEANOLOGY AND LIMNOLOGY, 2024, 42 (02) : 421 - 438
  • [50] STABILITY OF SOLITARY WAVES IN A NONLINEAR BIREFRINGENT OPTICAL FIBER
    DOWLING, RJ
    [J]. PHYSICAL REVIEW A, 1990, 42 (09): : 5553 - 5560