Gas breakdown in electron cyclotron resonance ion sources

被引:15
|
作者
Skalyga, V. A. [1 ]
Zorin, V. G.
Izotov, I. V.
Sidorov, A. V.
Lamy, T.
Sortais, P.
Thuillier, T.
机构
[1] Russian Acad Sci, Inst Appl Phys, Nizhnii Novgorod 603950, Russia
[2] UJF, IN2P3, CNRS, Lab Phys Subatom & Cosmol, F-38026 St Martin Dheres, France
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2006年 / 77卷 / 03期
关键词
D O I
10.1063/1.2166671
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The realization of the beta-beam project (http://beta-beam.web.cern.ch/beta-beam/) assumes the formation of a pulsed ion beam of helium and neon radioactive isotopes. A pulsed electron cyclotron resonance (ECR) source of multicharged ions has been proposed to produce such a beam [P. Sortais et al., Rev. Sci. Instrum. 75, 1610 (2004)]. The rising of plasma density up to a stationary level must be fast enough to actualize this approach. This condition is mandatory to avoid particle losses in the transmission line. In the presented work, the rising time of the plasma density in an ECR ion source from a background level up to 98% of a stationary level is calculated. A zero-dimensional model of plasma formation in a mirror trap [V. Semenov et al., Rev. Sci. Instrum. 73, 635 (2002)] is used, able to make calculation for a wide range of microwave frequencies. Plasma confinement regime can either be classic (Pastoukhov [Rev. Plasma Phys. 13, 203 (1987)]) or gas dynamic, depending on the plasma parameters. The calculations are in good agreement with the experimental results obtained at the SMIS'37 setup. Numerical calculations also show that particle losses can be significantly reduced by pumping effect; thanks to microwave frequency increase above 40 GHz. (c) 2006 American Institute of Physics.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Electron cyclotron resonance ion sources
    Melin, G
    APPLICATION OF ACCELERATORS IN RESEARCH AND INDUSTRY - PROCEEDINGS OF THE FOURTEENTH INTERNATIONAL CONFERENCE, PTS 1 AND 2, 1997, (392): : 1195 - 1198
  • [2] Fullerenes in electron cyclotron resonance ion sources
    Biri, S.
    Fekete, E.
    Kitagawa, A.
    Muramatsu, M.
    Janossy, A.
    Palinkas, J.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2006, 77 (03):
  • [3] Numerical simulations of gas mixing effect in electron cyclotron resonance ion sources
    Mironov, V.
    Bogomolov, S.
    Bondarchenko, A.
    Efremov, A.
    Loginov, V.
    PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2017, 20 (01):
  • [4] Electron cyclotron resonance plasmas and electron cyclotron resonance ion sources: Physics and technology (invited)
    Girard, A
    Hitz, D
    Melin, G
    Serebrennikov, K
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (05): : 1381 - 1388
  • [5] Light ion heating in electron cyclotron resonance ion sources
    Meyer, D
    Nadzeyka, A
    Remscheid, A
    Wiesemann, K
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1996, 67 (03): : 1325 - 1327
  • [6] RF Heating in Electron Cyclotron Resonance Ion Sources
    Mascali, D.
    Gammino, S.
    Celona, L.
    Ciavola, G.
    RADIO FREQUENCY POWER IN PLASMAS: PROCEEDINGS OF THE 19TH TOPICAL CONFERENCE, 2011, 1406
  • [7] Global equilibrium in electron cyclotron resonance ion sources
    Cavenago, M
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2006, 77 (03):
  • [9] ELECTRON-CYCLOTRON-RESONANCE ION SOURCES - REVIEW
    GOLOVANIVSKII, KS
    DOUGARJABON, VD
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 1991, 34 (04) : 739 - 750
  • [10] Extraction studies on electron cyclotron resonance ion sources
    Leroy, R
    Mandin, J
    Bertrand, P
    Lecesne, N
    Pacquet, JY
    Robert, E
    Sortais, P
    Villari, ACC
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1996, 67 (03): : 1350 - 1352