Gas breakdown in electron cyclotron resonance ion sources

被引:15
|
作者
Skalyga, V. A. [1 ]
Zorin, V. G.
Izotov, I. V.
Sidorov, A. V.
Lamy, T.
Sortais, P.
Thuillier, T.
机构
[1] Russian Acad Sci, Inst Appl Phys, Nizhnii Novgorod 603950, Russia
[2] UJF, IN2P3, CNRS, Lab Phys Subatom & Cosmol, F-38026 St Martin Dheres, France
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2006年 / 77卷 / 03期
关键词
D O I
10.1063/1.2166671
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The realization of the beta-beam project (http://beta-beam.web.cern.ch/beta-beam/) assumes the formation of a pulsed ion beam of helium and neon radioactive isotopes. A pulsed electron cyclotron resonance (ECR) source of multicharged ions has been proposed to produce such a beam [P. Sortais et al., Rev. Sci. Instrum. 75, 1610 (2004)]. The rising of plasma density up to a stationary level must be fast enough to actualize this approach. This condition is mandatory to avoid particle losses in the transmission line. In the presented work, the rising time of the plasma density in an ECR ion source from a background level up to 98% of a stationary level is calculated. A zero-dimensional model of plasma formation in a mirror trap [V. Semenov et al., Rev. Sci. Instrum. 73, 635 (2002)] is used, able to make calculation for a wide range of microwave frequencies. Plasma confinement regime can either be classic (Pastoukhov [Rev. Plasma Phys. 13, 203 (1987)]) or gas dynamic, depending on the plasma parameters. The calculations are in good agreement with the experimental results obtained at the SMIS'37 setup. Numerical calculations also show that particle losses can be significantly reduced by pumping effect; thanks to microwave frequency increase above 40 GHz. (c) 2006 American Institute of Physics.
引用
收藏
页数:3
相关论文
共 50 条
  • [31] Development and validation of the numerical model of Electron Cyclotron Resonance Ion Sources
    Mironov, V
    Bogomolov, S.
    Bondarchenko, A.
    Efremov, A.
    Loginov, V
    Pugachev, D.
    JOURNAL OF INSTRUMENTATION, 2022, 17 (06)
  • [32] Limitations to the plasma energy and density in electron cyclotron resonance ion sources
    Perret, C
    Girard, A
    Khodja, H
    Melin, G
    PHYSICS OF PLASMAS, 1999, 6 (08) : 3408 - 3415
  • [33] Status of charge breeding with electron cyclotron resonance ion sources (invited)
    Lamy, T
    Geller, R
    Sortais, P
    Thuillier, T
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2006, 77 (03):
  • [34] Electron cyclotron resonance ion sources - physics, technology and future challenges
    Tarvainen, O.
    Kalvas, T.
    Koivisto, H.
    Skalyga, V.
    Izotov, I.
    Mansfeld, D.
    10TH INTERNATIONAL WORKSHOP 2017 STRONG MICROWAVES AND TERAHERTZ WAVES: SOURCES AND APPLICATIONS, 2017, 149
  • [35] IONIZATION AND CHARGE DISPERSION IN ELECTRON-CYCLOTRON RESONANCE ION SOURCES
    SHIRKOV, GD
    MUHLE, C
    MUSIOL, G
    ZSCHORNACK, G
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1991, 302 (01): : 1 - 5
  • [36] Successful modeling, design, and test of electron cyclotron resonance ion sources
    Heinen, A
    Ruther, M
    Ducree, J
    Leuker, J
    Mrogenda, J
    Ortjohann, HW
    Reckels, E
    Vitt, C
    Andra, HJ
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1998, 69 (02): : 729 - 731
  • [37] Optimization of Parameters of Hexapole Magnets for Electron Cyclotron Resonance Ion Sources
    Pugachev, D. K.
    Bogomolov, S. L.
    Bondarchenko, A. E.
    Berestov, K. I.
    Kuzmenkov, K. I.
    Efremov, A. A.
    Loginov, V. N.
    Mironov, V. E.
    Protasov, A. A.
    PHYSICS OF PARTICLES AND NUCLEI LETTERS, 2024, 21 (03) : 331 - 336
  • [38] A possible optimization of electron cyclotron resonance ion sources plasma chambers
    Gallo, C. S.
    Galata, A.
    Mascali, D.
    Torrisi, G.
    JOURNAL OF INSTRUMENTATION, 2018, 13
  • [39] Recent performance of Japanese electron cyclotron resonance ion sources (invited)
    Nakagawa, T
    Yano, Y
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2000, 71 (02): : 637 - 642