Gas breakdown in electron cyclotron resonance ion sources

被引:15
|
作者
Skalyga, V. A. [1 ]
Zorin, V. G.
Izotov, I. V.
Sidorov, A. V.
Lamy, T.
Sortais, P.
Thuillier, T.
机构
[1] Russian Acad Sci, Inst Appl Phys, Nizhnii Novgorod 603950, Russia
[2] UJF, IN2P3, CNRS, Lab Phys Subatom & Cosmol, F-38026 St Martin Dheres, France
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2006年 / 77卷 / 03期
关键词
D O I
10.1063/1.2166671
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The realization of the beta-beam project (http://beta-beam.web.cern.ch/beta-beam/) assumes the formation of a pulsed ion beam of helium and neon radioactive isotopes. A pulsed electron cyclotron resonance (ECR) source of multicharged ions has been proposed to produce such a beam [P. Sortais et al., Rev. Sci. Instrum. 75, 1610 (2004)]. The rising of plasma density up to a stationary level must be fast enough to actualize this approach. This condition is mandatory to avoid particle losses in the transmission line. In the presented work, the rising time of the plasma density in an ECR ion source from a background level up to 98% of a stationary level is calculated. A zero-dimensional model of plasma formation in a mirror trap [V. Semenov et al., Rev. Sci. Instrum. 73, 635 (2002)] is used, able to make calculation for a wide range of microwave frequencies. Plasma confinement regime can either be classic (Pastoukhov [Rev. Plasma Phys. 13, 203 (1987)]) or gas dynamic, depending on the plasma parameters. The calculations are in good agreement with the experimental results obtained at the SMIS'37 setup. Numerical calculations also show that particle losses can be significantly reduced by pumping effect; thanks to microwave frequency increase above 40 GHz. (c) 2006 American Institute of Physics.
引用
收藏
页数:3
相关论文
共 50 条
  • [41] Application of Optical Emission Spectroscopy to Electron Cyclotron Resonance Ion Sources
    Castro, G.
    Reitano, R.
    Leonardi, O.
    Russo, F.
    Celona, L.
    D'Agostino, G.
    Gammino, S.
    Neri, L.
    Costanzo, G.
    Siliato, D.
    20TH INTERNATIONAL CONFERENCE ON ION SOURCES, 2024, 2743
  • [42] Spectroscopic studies in the VUV range in electron cyclotron resonance ion sources
    Jettkant, B
    Berreby, R
    Hitz, D
    Druetta, M
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1996, 67 (03): : 1258 - 1260
  • [43] Investigation of hot electrons in electron-cyclotron-resonance ion sources
    1600, American Inst of Physics, Woodbury, NY, USA (76):
  • [44] Perspectives of Electron Cyclotron Resonance Ion Sources Beyond the Scaling Laws
    Gammino, S.
    Celona, L.
    Mascali, D.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2016, 63 (02) : 1051 - 1059
  • [45] Self-consistent modeling of electron cyclotron resonance ion sources
    Girard, A
    Hitz, D
    Melin, G
    Serebrennikov, K
    Lécot, C
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (05): : 1463 - 1466
  • [46] Biased-electrode operation of electron cyclotron resonance ion sources
    Mironov, V
    Runkel, S
    Stiebing, KE
    Hohn, O
    Schmidt, L
    Schmidt-Böcking, H
    Schempp, A
    Shirkov, G
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2001, 72 (10): : 3826 - 3828
  • [47] Electron cyclotron resonance ion sources with arc-shaped Coils
    Suominen, P.
    Wenander, F.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (02):
  • [49] Spectroscopic studies in the VUV range in electron cyclotron resonance ion sources
    Jettkant, B.
    Berreby, R.
    Hitz, D.
    Druetta, M.
    Review of Scientific Instruments, 1996, 67 (3 pt 2):
  • [50] Split Magnet for Efficient Electron Cyclotron Resonance Ion Sources Developments
    Lamy, T.
    Debray, F.
    Latrasse, L.
    Marie-Jeanne, M.
    Sala, P.
    Thuillier, T.
    Trophime, C.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2012, 22 (03)