Improving galaxy morphologies for SDSS with Deep Learning

被引:255
|
作者
Sanchez, H. Dominguez [1 ,2 ]
Huertas-Company, M. [1 ,2 ,3 ]
Bernardi, M. [1 ]
Tuccillo, D. [2 ,4 ]
Fischer, J. L. [1 ]
机构
[1] Univ Penn, Dept Phys & Astron, 209 South 33rd St, Philadelphia, PA 19104 USA
[2] UPMC Univ Paris 06, Sorbonne Univ, PSL Res Univ, LERMA,Observ Paris,CNRS, F-75014 Paris, France
[3] Univ Paris Sorbonne Cite PSC, Univ Paris Denis Diderot, F-75205 Paris 13, France
[4] Mines ParisTech, 35 Rue St Honore, F-77305 Fontainebleau, France
关键词
methods; observational catalogues galaxies; structure; NEURAL-NETWORKS; ZOO; CLASSIFICATIONS; DEPENDENCE; EVOLUTION; CATALOG; NEARBY; END;
D O I
10.1093/mnras/sty338
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a morphological catalogue for similar to 670 000 galaxies in the Sloan Digital Sky Survey in two flavours: T-type, related to the Hubble sequence, and Galaxy Zoo 2 (GZ2 hereafter) classification scheme. By combining accurate existing visual classification catalogues with machine learning, we provide the largest and most accurate morphological catalogue up to date. The classifications are obtained with Deep Learning algorithms using Convolutional Neural Networks (CNNs). We use two visual classification catalogues, GZ2 and Nair & Abraham (2010), for training CNNs with colour images in order to obtain T-types and a series of GZ2 type questions (disc/features, edge-on galaxies, bar signature, bulge prominence, roundness, and mergers). We also provide an additional probability enabling a separation between pure elliptical (E) from SO, where the T-type model is not so efficient. For the T-type, our results show smaller offset and scatter than previous models trained with support vector machines. For the GZ2 type questions, our models have large accuracy (>97 per cent), precision and recall values (>90 per cent), when applied to a test sample with the same characteristics as the one used for training. The catalogue is publicly released with the paper.
引用
收藏
页码:3661 / 3676
页数:16
相关论文
共 50 条
  • [11] Classifying Galaxy Morphologies with Few-shot Learning
    Zhang, Zhirui
    Zou, Zhiqiang
    Li, Nan
    Chen, Yanli
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2022, 22 (05)
  • [12] Galaxy evolution from halo occupation distribution modeling of DEEP2 and SDSS galaxy clustering
    Zheng, Zheng
    Coil, Alison L.
    Zehavi, Idit
    ASTROPHYSICAL JOURNAL, 2007, 667 (02): : 760 - 779
  • [13] Galaxy Classifications with Deep Learning
    Lukic, Vesna
    Brueggen, Marcus
    ASTROINFORMATICS, 2017, 12 (S325): : 217 - 220
  • [14] Criteria for galaxy classification in SDSS
    Dobrycheva, D.
    Melnyk, O.
    ADVANCES IN ASTRONOMY AND SPACE PHYSICS, 2012, 2 (01): : 42 - 44
  • [15] Voids in the SDSS galaxy survey
    Tikhonov, A. V.
    ASTRONOMY LETTERS-A JOURNAL OF ASTRONOMY AND SPACE ASTROPHYSICS, 2007, 33 (08): : 499 - 511
  • [16] On the dependence of galaxy morphologies on galaxy mergers
    Fontanot, Fabio
    Maccio, Andrea V.
    Hirschmann, Michaela
    De Lucia, Gabriella
    Kannan, Rahul
    Somerville, Rachel S.
    Wilman, Dave
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 451 (03) : 2968 - 2977
  • [17] Voids in the SDSS galaxy survey
    A. V. Tikhonov
    Astronomy Letters, 2007, 33 : 499 - 511
  • [18] Galaxy Morphology in the deep learning era
    Huertas-Company, Marc
    2021 INTERNATIONAL CONFERENCE ON CONTENT-BASED MULTIMEDIA INDEXING (CBMI), 2021, : 177 - 182
  • [19] Deep learning for studies of galaxy morphology
    Tuccillo, D.
    Huertas-Company, M.
    Decenciere, E.
    Velasco-Forero, S.
    ASTROINFORMATICS, 2017, 12 (S325): : 191 - 196
  • [20] Improving galaxy clustering measurements with deep learning: analysis of the DECaLS DR7 data
    Rezaie, Mehdi
    Seo, Hee-Jong
    Ross, Ashley J.
    Bunescu, Razvan C.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 495 (02) : 1613 - 1640