Improving galaxy morphologies for SDSS with Deep Learning

被引:255
|
作者
Sanchez, H. Dominguez [1 ,2 ]
Huertas-Company, M. [1 ,2 ,3 ]
Bernardi, M. [1 ]
Tuccillo, D. [2 ,4 ]
Fischer, J. L. [1 ]
机构
[1] Univ Penn, Dept Phys & Astron, 209 South 33rd St, Philadelphia, PA 19104 USA
[2] UPMC Univ Paris 06, Sorbonne Univ, PSL Res Univ, LERMA,Observ Paris,CNRS, F-75014 Paris, France
[3] Univ Paris Sorbonne Cite PSC, Univ Paris Denis Diderot, F-75205 Paris 13, France
[4] Mines ParisTech, 35 Rue St Honore, F-77305 Fontainebleau, France
关键词
methods; observational catalogues galaxies; structure; NEURAL-NETWORKS; ZOO; CLASSIFICATIONS; DEPENDENCE; EVOLUTION; CATALOG; NEARBY; END;
D O I
10.1093/mnras/sty338
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a morphological catalogue for similar to 670 000 galaxies in the Sloan Digital Sky Survey in two flavours: T-type, related to the Hubble sequence, and Galaxy Zoo 2 (GZ2 hereafter) classification scheme. By combining accurate existing visual classification catalogues with machine learning, we provide the largest and most accurate morphological catalogue up to date. The classifications are obtained with Deep Learning algorithms using Convolutional Neural Networks (CNNs). We use two visual classification catalogues, GZ2 and Nair & Abraham (2010), for training CNNs with colour images in order to obtain T-types and a series of GZ2 type questions (disc/features, edge-on galaxies, bar signature, bulge prominence, roundness, and mergers). We also provide an additional probability enabling a separation between pure elliptical (E) from SO, where the T-type model is not so efficient. For the T-type, our results show smaller offset and scatter than previous models trained with support vector machines. For the GZ2 type questions, our models have large accuracy (>97 per cent), precision and recall values (>90 per cent), when applied to a test sample with the same characteristics as the one used for training. The catalogue is publicly released with the paper.
引用
收藏
页码:3661 / 3676
页数:16
相关论文
共 50 条
  • [21] A spectrophotometric search for galaxy clusters in SDSS
    Yoon, Joo H.
    Schawinski, Kevin
    Sheen, Yun-Kyeong
    Ree, Chang H.
    Yi, Sukyoung K.
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2008, 176 (02): : 414 - 423
  • [22] Unsupervised classification of SDSS galaxy spectra
    Fraix-Burnet, D.
    Bouveyron, C.
    Moultaka, J.
    ASTRONOMY & ASTROPHYSICS, 2021, 649
  • [23] Elucidating galaxy assembly bias in SDSS
    Andrés N. Salcedo
    Ying Zu
    Youcai Zhang
    Huiyuan Wang
    Xiaohu Yang
    Yiheng Wu
    Yipeng Jing
    Houjun Mo
    David H. Weinberg
    Science China Physics, Mechanics & Astronomy, 2022, 65
  • [24] Unsupervised classification of SDSS galaxy spectra
    Fraix-Burnet, D.
    Bouveyron, C.
    Moultaka, J.
    Astronomy and Astrophysics, 2021, 649
  • [25] THE GALAXY CONTENT OF SDSS CLUSTERS AND GROUPS
    Hansen, Sarah M.
    Sheldon, Erin S.
    Wechsler, Risa H.
    Koester, Benjamin P.
    ASTROPHYSICAL JOURNAL, 2009, 699 (02): : 1333 - 1353
  • [26] SDSS superclusters: Morphology and galaxy content
    1600, EDP Sciences (562):
  • [27] The ALFALFA-SDSS Galaxy Catalog
    Durbala, Adriana
    Finn, Rose A.
    Odekon, Mary Crone
    Haynes, Martha P.
    Koopmann, Rebecca A.
    O'Donoghue, Aileen A.
    ASTRONOMICAL JOURNAL, 2020, 160 (06):
  • [28] Elucidating galaxy assembly bias in SDSS
    Salcedo, Andres N.
    Zu, Ying
    Zhang, Youcai
    Wang, Huiyuan
    Yang, Xiaohu
    Wu, Yiheng
    Jing, Yipeng
    Mo, Houjun
    Weinberg, David H.
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2022, 65 (10)
  • [29] Elucidating galaxy assembly bias in SDSS
    Andrés N.Salcedo
    Ying Zu
    Youcai Zhang
    Huiyuan Wang
    Xiaohu Yang
    Yiheng Wu
    Yipeng Jing
    Houjun Mo
    David H.Weinberg
    Science China(Physics,Mechanics & Astronomy), 2022, Mechanics & Astronomy)2022 (10) : 134 - 154
  • [30] Galaxy Mass Growth in GDDS and SDSS
    Glazebrook, Karl
    Mentuch, Erin
    McCarthy, Pat
    Abraham, Roberto
    Baldry, Ivan
    Driver, Simon
    PANORAMIC VIEWS OF GALAXY FORMATION AND EVOLUTION, PROCEEDINGS, 2008, 399 : 148 - 152