Galaxy Morphology in the deep learning era

被引:0
|
作者
Huertas-Company, Marc [1 ,2 ]
机构
[1] Univ Paris, Observ Paris, LERMA IAC, Paris, France
[2] Univ La Laguna, Inst Astrofis Canarias, Tenerife, Spain
关键词
deep learning; galaxy morphology; GIANT CLUMPS; SIMULATIONS;
D O I
10.1109/CBMI50038.2021.9461889
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The galaxy population today is known to present a bimodal distribution of shapes, going from disky, rotationally supported star-forming galaxies to spheroidal, pressure supported quiescent galaxies. The origins of this galaxy diversity are still debated and understanding the physical process that build the galaxy population is the main purpose of the field of galaxy formation and evolution. In order to progress in this front, it is desirable to have large samples of galaxies with labeled morphologies at different cosmic epochs. This is a field where deep learning has had a major impact by enabling the automated classification of galaxies with unprecedented accuracy. We review some of the key results obtained by our group in this paper.
引用
收藏
页码:177 / 182
页数:6
相关论文
共 50 条
  • [1] Deep learning for studies of galaxy morphology
    Tuccillo, D.
    Huertas-Company, M.
    Decenciere, E.
    Velasco-Forero, S.
    [J]. ASTROINFORMATICS, 2017, 12 (S325): : 191 - 196
  • [2] A Lightweight Deep Learning Framework for Galaxy Morphology Classification
    Donglin Wu
    Jinqu Zhang
    Xiangru Li
    Hui Li
    [J]. Research in Astronomy and Astrophysics, 2022, 22 (11) : 124 - 133
  • [3] A Lightweight Deep Learning Framework for Galaxy Morphology Classification
    Wu, Donglin
    Zhang, Jinqu
    Li, Xiangru
    Li, Hui
    [J]. RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2022, 22 (11)
  • [4] Explaining deep learning of galaxy morphology with saliency mapping
    Bhambra, Prabh
    Joachimi, Benjamin
    Lahav, Ofer
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 511 (04) : 5032 - 5041
  • [5] Transfer Learning and Deep Metric Learning for Automated Galaxy Morphology Representation
    Variawa, Mohamed Zayyan
    Van Zyl, Terence L.
    Woolway, Matthew
    [J]. IEEE ACCESS, 2022, 10 : 19539 - 19550
  • [6] A Comparison of Deep Learning Architectures for Optical Galaxy Morphology Classification
    Fielding, Ezra
    Nyirenda, Clement N.
    Vaccari, Mattia
    [J]. INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER AND ENERGY TECHNOLOGIES (ICECET 2021), 2021, : 1360 - 1364
  • [7] Machine and Deep Learning applied to galaxy morphology - A comparative study
    Barchi, P. H.
    de Carvalho, R. R.
    Rosa, R. R.
    Sautter, R. A.
    Soares-Santos, M.
    Marques, B. A. D.
    Clua, E.
    Goncalves, T. S.
    de Sa-Freitas, C.
    Moura, T. C.
    [J]. ASTRONOMY AND COMPUTING, 2020, 30
  • [8] Practical galaxy morphology tools from deep supervised representation learning
    Walmsley, Mike
    Scaife, Anna M. M.
    Lintott, Chris
    Lochner, Michelle
    Etsebeth, Verlon
    Geron, Tobias
    Dickinson, Hugh
    Fortson, Lucy
    Kruk, Sandor
    Masters, Karen L.
    Mantha, Kameswara Bharadwaj
    Simmons, Brooke D.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 513 (02) : 1581 - 1599
  • [9] DeepAdversaries: examining the robustness of deep learning models for galaxy morphology classification
    Ciprijanovic, Aleksandra
    Kafkes, Diana
    Snyder, Gregory
    Sanchez, F. Javier
    Perdue, Gabriel Nathan
    Pedro, Kevin
    Nord, Brian
    Madireddy, Sandeep
    Wild, Stefan M.
    [J]. MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2022, 3 (03):
  • [10] Galaxy Classifications with Deep Learning
    Lukic, Vesna
    Brueggen, Marcus
    [J]. ASTROINFORMATICS, 2017, 12 (S325): : 217 - 220