Node sampling by partitioning on graphs via convex optimization

被引:0
|
作者
Rusu, Cristian [1 ]
Thompson, John [1 ]
机构
[1] Univ Edinburgh, Inst Digital Commun, Edinburgh, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
graph signal processing; sampling on graphs; sensor management; convex optimization; binary optimization; SENSOR SELECTION; D-OPTIMALITY; DESIGNS; RECONSTRUCTION; ALGORITHMS; SPARSITY; SPACES; FIELD;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper we deal with the problem of efficiently and accurately reconstructing a complete graph signal from partially observed noisy measurements. Given a graph structure, we propose a solution based on convex optimization techniques to partition the nodes of the graph into subsets such that sampling a graph signal from any of these subsets provides an accurate, low mean squared error for example, reconstruction of the original complete graph signal. We show how the proposed sampling set construction approach relates to optimal experimental design, sensor management, positioning and selection problems and provide numerical simulation results on synthetic and real-world graphs.
引用
收藏
页码:45 / 49
页数:5
相关论文
共 50 条
  • [41] Exact Matrix Completion via Convex Optimization
    Emmanuel J. Candès
    Benjamin Recht
    Foundations of Computational Mathematics, 2009, 9 : 717 - 772
  • [42] Quantum error correction via convex optimization
    Robert L. Kosut
    Daniel A. Lidar
    Quantum Information Processing, 2009, 8 : 443 - 459
  • [43] Radar Signal Demixing via Convex Optimization
    Xie, Youye
    Li, Shuang
    Tang, Gongguo
    Wakin, Michael B.
    2017 22ND INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2017,
  • [44] Sparse Reinforcement Learning via Convex Optimization
    Qin, Zhiwei
    Li, Weichang
    Janoos, Firdaus
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 2), 2014, 32 : 424 - 432
  • [45] Reconstruction of quantum channel via convex optimization
    Huang, Xuan-Lun
    Gao, Jun
    Jiao, Zhi-Qiang
    Yan, Zeng-Quan
    Zhang, Zhe-Yong
    Chen, Dan-Yang
    Zhang, Xi
    Ji, Ling
    Jin, Xian-Min
    SCIENCE BULLETIN, 2020, 65 (04) : 286 - 292
  • [46] Global passivity enforcement via convex optimization
    Porkar, B.
    Vakilian, M.
    Shahrtash, S. M.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION B-ENGINEERING, 2008, 32 (B3): : 265 - 277
  • [47] Decomposition of Toeplitz matrices via convex optimization
    Georgiou, Tryphon T.
    IEEE SIGNAL PROCESSING LETTERS, 2006, 13 (09) : 537 - 540
  • [48] Exact Matrix Completion via Convex Optimization
    Candes, Emmanuel J.
    Recht, Benjamin
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2009, 9 (06) : 717 - 772
  • [49] Mismatch Filter Design via Convex Optimization
    Kajenski, Peter J.
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2016, 52 (04) : 1587 - 1591
  • [50] On sequential hypotheses testing via convex optimization
    Juditsky, A. B.
    Nemirovski, A. S.
    AUTOMATION AND REMOTE CONTROL, 2015, 76 (05) : 809 - 825