On sequential hypotheses testing via convex optimization

被引:3
|
作者
Juditsky, A. B. [1 ]
Nemirovski, A. S. [2 ]
机构
[1] Univ Grenoble Alpes, LJK, Grenoble, France
[2] Georgia Inst Technol, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Remote Control; Sequential Test; Convex Optimization; Spectral Norm; Observation Sample;
D O I
10.1134/S0005117915050070
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a new approach to sequential testing which is an adaptive (on-line) extension of the (off-line) framework developed in [1]. It relies upon testing of pairs of hypotheses in the case where each hypothesis states that the vector of parameters underlying the distribution of observations belongs to a convex set. The nearly optimal under appropriate conditions test is yielded by a solution to an efficiently solvable convex optimization problem. The proposed methodology can be seen as a computationally friendly reformulation of the classical sequential testing.
引用
收藏
页码:809 / 825
页数:17
相关论文
共 50 条
  • [1] On sequential hypotheses testing via convex optimization
    A. B. Juditsky
    A. S. Nemirovski
    Automation and Remote Control, 2015, 76 : 809 - 825
  • [2] Discussion of "Hypotheses testing by convex optimization"
    Munk, Axel
    Werner, Frank
    ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (02): : 1720 - 1722
  • [3] Testing composite hypotheses via convex duality
    Rudloff, Birgit
    Karatzas, Ioannis
    BERNOULLI, 2010, 16 (04) : 1224 - 1239
  • [4] GuSTO: Guaranteed Sequential Trajectory Optimization via Sequential Convex Programming
    Bonalli, Riccardo
    Cauligi, Ahhishek
    Bylard, Andrew
    Pavone, Marco
    2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2019, : 6741 - 6747
  • [5] Sequential testing of composite hypotheses
    Gombay, E
    LIMIT THEOREMS IN PROBABILITY AND STATISTICS, VOL II, 2002, : 107 - 125
  • [6] Nonlinear robust optimization via sequential convex bilevel programming
    Houska, Boris
    Diehl, Moritz
    MATHEMATICAL PROGRAMMING, 2013, 142 (1-2) : 539 - 577
  • [7] Nonlinear robust optimization via sequential convex bilevel programming
    Boris Houska
    Moritz Diehl
    Mathematical Programming, 2013, 142 : 539 - 577
  • [8] Doppler-Only Multistatic Radar via Sequential Convex Optimization
    Hodkin, Jason E.
    Chandrasekar, V
    2020 IEEE INTERNATIONAL RADAR CONFERENCE (RADAR), 2020, : 923 - 927
  • [9] Constrained Trajectory Optimization for Planetary Entry via Sequential Convex Programming
    Wang, Zhenbo
    Grant, Michael J.
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2017, 40 (10) : 2603 - 2615
  • [10] Sequential Change-Point Detection via Online Convex Optimization
    Cao, Yang
    Xie, Liyan
    Xie, Yao
    Xu, Huan
    ENTROPY, 2018, 20 (02):