On sequential hypotheses testing via convex optimization

被引:3
|
作者
Juditsky, A. B. [1 ]
Nemirovski, A. S. [2 ]
机构
[1] Univ Grenoble Alpes, LJK, Grenoble, France
[2] Georgia Inst Technol, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Remote Control; Sequential Test; Convex Optimization; Spectral Norm; Observation Sample;
D O I
10.1134/S0005117915050070
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a new approach to sequential testing which is an adaptive (on-line) extension of the (off-line) framework developed in [1]. It relies upon testing of pairs of hypotheses in the case where each hypothesis states that the vector of parameters underlying the distribution of observations belongs to a convex set. The nearly optimal under appropriate conditions test is yielded by a solution to an efficiently solvable convex optimization problem. The proposed methodology can be seen as a computationally friendly reformulation of the classical sequential testing.
引用
收藏
页码:809 / 825
页数:17
相关论文
共 50 条
  • [31] Hypotheses testing through the closed sequential deciseon procedures
    Hungund, C. P. S.
    Paralkar, Medha
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2007, 3 (01): : 69 - 77
  • [32] Motion planning with sequential convex optimization and convex collision checking
    Schulman, John
    Duan, Yan
    Ho, Jonathan
    Lee, Alex
    Awwal, Ibrahim
    Bradlow, Henry
    Pan, Jia
    Patil, Sachin
    Goldberg, Ken
    Abbeel, Pieter
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2014, 33 (09): : 1251 - 1270
  • [33] Sequential convex relaxation for convex optimization with bilinear matrix equalities
    Doelman, Reinier
    Verhaegen, Michel
    2016 EUROPEAN CONTROL CONFERENCE (ECC), 2016, : 1946 - 1951
  • [34] Minimax Euclidean separation rates for testing convex hypotheses in Rd
    Blanchard, Gilles
    Carpentier, Alexandra
    Gutzeit, Maurilio
    ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (02): : 3713 - 3735
  • [35] Sequential Randomized Algorithms for Robust Convex Optimization
    Wada, Takayuki
    Fujisaki, Yasumasa
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (12) : 3356 - 3361
  • [36] Convex optimization via feedbacks
    Kryazhimskii, AV
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1998, 37 (01) : 278 - 302
  • [37] ROBUST SEQUENTIAL TESTING OF MULTIPLE HYPOTHESES IN DISTRIBUTED SENSOR NETWORKS
    Leonard, Mark R.
    Stiefel, Maximilian
    Fauss, Michael
    Zoubir, Abdelhak M.
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 4394 - 4398
  • [38] CBM for testing multiple hypotheses with directional alternatives in sequential experiments
    Kachiashvili, K. J.
    Kachiashvili, J. K.
    Prangishvili, I. A.
    SEQUENTIAL ANALYSIS-DESIGN METHODS AND APPLICATIONS, 2020, 39 (01): : 115 - 131
  • [40] A Bayesian sequential testing problem of three hypotheses for Brownian motion
    Zhitlukhin, Mikhail V.
    Shiryaev, Albert N.
    STATISTICS & RISK MODELING, 2011, 28 (03) : 227 - 249