Node sampling by partitioning on graphs via convex optimization

被引:0
|
作者
Rusu, Cristian [1 ]
Thompson, John [1 ]
机构
[1] Univ Edinburgh, Inst Digital Commun, Edinburgh, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
graph signal processing; sampling on graphs; sensor management; convex optimization; binary optimization; SENSOR SELECTION; D-OPTIMALITY; DESIGNS; RECONSTRUCTION; ALGORITHMS; SPARSITY; SPACES; FIELD;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper we deal with the problem of efficiently and accurately reconstructing a complete graph signal from partially observed noisy measurements. Given a graph structure, we propose a solution based on convex optimization techniques to partition the nodes of the graph into subsets such that sampling a graph signal from any of these subsets provides an accurate, low mean squared error for example, reconstruction of the original complete graph signal. We show how the proposed sampling set construction approach relates to optimal experimental design, sensor management, positioning and selection problems and provide numerical simulation results on synthetic and real-world graphs.
引用
收藏
页码:45 / 49
页数:5
相关论文
共 50 条
  • [21] Clustering graphs for visualization via node similarities
    Huang, Xiaodi
    Lai, Wei
    JOURNAL OF VISUAL LANGUAGES AND COMPUTING, 2006, 17 (03): : 225 - 253
  • [22] Statistical Inference via Convex Optimization
    Ghosh, Debashis
    INTERNATIONAL STATISTICAL REVIEW, 2020, 88 (03) : 806 - 808
  • [23] Covariance prediction via convex optimization
    Shane Barratt
    Stephen Boyd
    Optimization and Engineering, 2023, 24 : 2045 - 2078
  • [24] Learning the kernel via convex optimization
    Kim, Seung-Jean
    Zymnis, Argyrios
    Magnani, Alessandro
    Koh, Kwangmoo
    Boyd, Stephen
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 1997 - 2000
  • [25] Statistical Inference via Convex Optimization
    Ghosh, Debashis
    INTERNATIONAL STATISTICAL REVIEW, 2020,
  • [26] Covariance prediction via convex optimization
    Barratt, Shane
    Boyd, Stephen
    OPTIMIZATION AND ENGINEERING, 2023, 24 (03) : 2045 - 2078
  • [27] Sensor Selection via Convex Optimization
    Joshi, Siddharth
    Boyd, Stephen
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (02) : 451 - 462
  • [28] Robust polarimetry via convex optimization
    Leamer, Jacob M.
    Zhang, Wenlei
    Saripalli, Ravi K.
    Glasser, Ryan T.
    Bondar, Denys, I
    APPLIED OPTICS, 2020, 59 (28) : 8886 - 8894
  • [29] Combinatorial optimization of special graphs for nodal ordering and graph partitioning
    Kaveh, A.
    Koohestani, K.
    ACTA MECHANICA, 2009, 207 (1-2) : 95 - 108
  • [30] Combinatorial optimization of special graphs for nodal ordering and graph partitioning
    A. Kaveh
    K. Koohestani
    Acta Mechanica, 2009, 207 : 95 - 108