A Derivation of Moment Evolution Equations for Linear Open Quantum Systems

被引:0
|
作者
Ma, Shan [1 ,2 ]
Woolley, Matthew J. [3 ]
Petersen, Ian R. [4 ]
机构
[1] Cent S Univ, Sch Informat Sci & Engn, Changsha 410083, Hunan, Peoples R China
[2] UNSW Canberra, Sch Engn & Informat Technol, Canberra, ACT 2600, Australia
[3] UNSW Canberra, Sch Engn & IT, Canberra, ACT 2600, Australia
[4] Australian Natl Univ, Res Sch Engn, Canberra, ACT 2601, Australia
来源
PROCEEDINGS 2018 33RD YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION (YAC) | 2018年
基金
澳大利亚研究理事会;
关键词
Linear quantum system; open quantum system; Lindblad master equation; moment; evolution; mean vector; covariance matrix; Gaussian state; reservoir engineering; drift matrix; diffusion matrix;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Given a linear open quantum system which is described by a Lindblad master equation, we detail the calculation of the moment evolution equations from this master equation. We stress that the moment evolution equations are well-known, but their explicit derivation from the master equation cannot be found in the literature to the best of our knowledge, and so we provide this derivation for the interested reader.
引用
收藏
页码:6 / 11
页数:6
相关论文
共 50 条
  • [41] Analytical derivation of moment equations in stochastic chemical kinetics
    Sotiropoulos, Vassilios
    Kaznessis, Yiannis N.
    CHEMICAL ENGINEERING SCIENCE, 2011, 66 (03) : 268 - 277
  • [42] Solving Systems of Linear Equations with a Superconducting Quantum Processor
    Zheng, Yarui
    Song, Chao
    Chen, Ming-Cheng
    Xia, Benxiang
    Liu, Wuxin
    Guo, Qiujiang
    Zhang, Libo
    Xu, Da
    Deng, Hui
    Huang, Keqiang
    Wu, Yulin
    Yan, Zhiguang
    Zheng, Dongning
    Lu, Li
    Pan, Jian-Wei
    Wang, H.
    Lu, Chao-Yang
    Zhu, Xiaobo
    PHYSICAL REVIEW LETTERS, 2017, 118 (21)
  • [43] Experimental Quantum Computing to Solve Systems of Linear Equations
    Cai, X. -D.
    Weedbrook, C.
    Su, Z. -E.
    Chen, M. -C.
    Gu, Mile
    Zhu, M. -J.
    Li, Li
    Liu, Nai-Le
    Lu, Chao-Yang
    Pan, Jian-Wei
    PHYSICAL REVIEW LETTERS, 2013, 110 (23)
  • [44] Quantum algorithms for matrix operations and linear systems of equations
    Wentao Qi
    Alexandr I Zenchuk
    Asutosh Kumar
    Junde Wu
    CommunicationsinTheoreticalPhysics, 2024, 76 (03) : 102 - 114
  • [45] Coherence dynamics in quantum algorithm for linear systems of equations
    Ye, Linlin
    Wu, Zhaoqi
    Fei, Shao-Ming
    PHYSICA SCRIPTA, 2023, 98 (12)
  • [46] Quantum Algorithms for Systems of Linear Equations Inspired by Adiabatic Quantum Computing
    Subasi, Yigit
    Somma, Rolando D.
    Orsucci, Davide
    PHYSICAL REVIEW LETTERS, 2019, 122 (06)
  • [47] Boundary value problems for systems of linear evolution equations
    Treharne, PA
    Fokas, AS
    IMA JOURNAL OF APPLIED MATHEMATICS, 2004, 69 (06) : 539 - 555
  • [48] ON THE SPECTRUM OF CERTAIN SYSTEMS OF LINEAR EVOLUTION-EQUATIONS
    ENGEL, KJ
    NAGEL, R
    LECTURE NOTES IN MATHEMATICS, 1986, 1223 : 102 - 109
  • [49] Boundary value problems for systems of linear evolution equations
    Treharne, P.A. (p.a.treharne@damtp.cam.ac.uk), 1600, Oxford University Press (69):
  • [50] APPROACHES TO DERIVATION OF QUANTUM KINETIC EQUATIONS
    Gerasimenko, V. I.
    UKRAINIAN JOURNAL OF PHYSICS, 2009, 54 (8-9): : 834 - 846