A Derivation of Moment Evolution Equations for Linear Open Quantum Systems

被引:0
|
作者
Ma, Shan [1 ,2 ]
Woolley, Matthew J. [3 ]
Petersen, Ian R. [4 ]
机构
[1] Cent S Univ, Sch Informat Sci & Engn, Changsha 410083, Hunan, Peoples R China
[2] UNSW Canberra, Sch Engn & Informat Technol, Canberra, ACT 2600, Australia
[3] UNSW Canberra, Sch Engn & IT, Canberra, ACT 2600, Australia
[4] Australian Natl Univ, Res Sch Engn, Canberra, ACT 2601, Australia
基金
澳大利亚研究理事会;
关键词
Linear quantum system; open quantum system; Lindblad master equation; moment; evolution; mean vector; covariance matrix; Gaussian state; reservoir engineering; drift matrix; diffusion matrix;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Given a linear open quantum system which is described by a Lindblad master equation, we detail the calculation of the moment evolution equations from this master equation. We stress that the moment evolution equations are well-known, but their explicit derivation from the master equation cannot be found in the literature to the best of our knowledge, and so we provide this derivation for the interested reader.
引用
收藏
页码:6 / 11
页数:6
相关论文
共 50 条
  • [31] Markovian master equations and resonances in quantum open systems
    Kossakowski, A
    IRREVERSIBLE QUANTUM DYNAMICS, 2003, 622 : 303 - 314
  • [32] Probability representation of kinetic equations for open quantum systems
    Man'ko, VI
    Sharapov, VA
    Shchukin, EV
    JOURNAL OF RUSSIAN LASER RESEARCH, 2003, 24 (02) : 180 - 193
  • [33] Probability Representation of Kinetic Equations for Open Quantum Systems
    V. I. Man'ko
    V. A. Sharapov
    E. V. Shchukin
    Journal of Russian Laser Research, 2003, 24 : 180 - 193
  • [34] Perturbative and nonperturbative master equations for open quantum systems
    Zhu, WS
    Rabitz, H
    JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (02)
  • [35] Open quantum systems with Kadanoff-Baym equations
    Neidig, Tim
    Rais, Jan
    Bleicher, Marcus
    van Hees, Hendrik
    Greiner, Carsten
    PHYSICS LETTERS B, 2024, 851
  • [36] CLOSURE OF MOMENT EQUATIONS OF LINEAR-SYSTEMS WITH STOCHASTIC PARAMETER EXCITATION
    SAGIROW, P
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1976, 56 (03): : T75 - T76
  • [37] Moment equations for linear systems subjected to polynomials of filtered Poisson processes
    Grigoriu, M
    Waisman, F
    PROBABILISTIC MECHANICS & STRUCTURAL RELIABILITY: PROCEEDINGS OF THE SEVENTH SPECIALTY CONFERENCE, 1996, : 262 - 265
  • [38] Quantum algorithms for matrix operations and linear systems of equations
    Qi, Wentao
    Zenchuk, Alexandr, I
    Kumar, Asutosh
    Wu, Junde
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2024, 76 (03)
  • [39] Quantum circuit design for solving linear systems of equations
    Cao, Yudong
    Daskin, Anmer
    Frankel, Steven
    Kais, Sabre
    MOLECULAR PHYSICS, 2012, 110 (15-16) : 1675 - 1680
  • [40] Derivation of the conditional moment closure equations for spray combustion
    Mortensen, Mikael
    Bilger, Robert W.
    COMBUSTION AND FLAME, 2009, 156 (01) : 62 - 72