Multilayered Membrane Electrolytes Based on Aramid Nanofibers for High-Temperature Proton Exchange Membrane Fuel Cells

被引:62
|
作者
Liu, Lei [1 ]
Li, Ziyun [1 ]
Che, Quantong [1 ]
机构
[1] Northeastern Univ, Dept Chem, Coll Sci, Shenyang 110819, Liaoning, Peoples R China
来源
ACS APPLIED NANO MATERIALS | 2019年 / 2卷 / 04期
基金
中国国家自然科学基金;
关键词
aramid nanofibers; cadmium telluride; spin coating; proton conductivity; multilayered membranes; proton exchange membranes; PHOSPHORIC-ACID; COMPOSITE MEMBRANES; SULFONATED POLYETHERETHERKETONE; ETHER KETONE); KEVLAR; POLYBENZIMIDAZOLE; OXIDE; CONDUCTIVITY; FABRICATION; DURABILITY;
D O I
10.1021/acsanm.9b00144
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The multilayered membranes based on Kevlar nanofibers, cadmium telluride (CdTe) nanocrystals, and phosphoric acid (PA) molecules were prepared with spin coating method. The accumulation of Kevlar nanofibers could support the layered (Kevlar-CdTe-PA)(4) membrane. CdTe nanocrystals functioned as bridges to link PA molecules with Kevlar nanofibers besides improving the mechanical property. More PA molecules were captured with intermolecular hydrogen bonds while (Kevlar-CdTe-PA)(4) membranes were immersed into PA solution. PA molecules dominated the proton conductivity of (Kevlar-CdTe-PA)(4)/PA membranes. The proton conductivity of (Kevlar-CdTe-PA)(4)/85%PA membranes reached 2.35 X 10(-1) S/cm at 160 degrees C under anhydrous conditions. In comparison to the tensile stress value of 0.35 MPa for the (Kevlar-PA)(4)/85%PA membrane, the value was elevated to 2.29 MPa at room temperature (RT) for the (Kevlar-CdTe-PA)(4)/8S%PA membrane. The layered distribution of components was considered to help reduce the resistance to proton conduction in (Kevlar-CdTe-PA)(4)/PA membranes.
引用
收藏
页码:2160 / 2168
页数:17
相关论文
共 50 条
  • [31] Three-dimensional hydrogel frameworks for high-temperature proton exchange membrane fuel cells
    Yuan, Shuangshuang
    Tang, Qunwei
    He, Benlin
    JOURNAL OF MATERIALS SCIENCE, 2014, 49 (15) : 5481 - 5491
  • [32] Performance failure mechanisms and mitigation strategies of high-temperature proton exchange membrane fuel cells
    Wang, Shufan
    Zheng, Yun
    Xv, Chenhui
    Liu, Haishan
    Li, Lingfei
    Yan, Wei
    Zhang, Jiujun
    PROGRESS IN MATERIALS SCIENCE, 2025, 148
  • [33] Three-dimensional hydrogel frameworks for high-temperature proton exchange membrane fuel cells
    Shuangshuang Yuan
    Qunwei Tang
    Benlin He
    Journal of Materials Science, 2014, 49 : 5481 - 5491
  • [34] Focus on the catalysts to resist the phosphate poisoning in high-temperature proton exchange membrane fuel cells
    Gong, Liyuan
    Tao, Li
    Wang, Lei
    Fu, Xian-Zhu
    Wang, Shuangyin
    CHINESE JOURNAL OF CATALYSIS, 2025, 68 : 155 - 176
  • [35] Strategies for Mitigating Phosphoric Acid Leaching in High-Temperature Proton Exchange Membrane Fuel Cells
    Xu, Zhongming
    Chen, Nanjie
    Huang, Sheng
    Wang, Shuanjin
    Han, Dongmei
    Xiao, Min
    Meng, Yuezhong
    MOLECULES, 2024, 29 (18):
  • [36] Dynamic modeling of a high-temperature proton exchange membrane fuel cell with a fuel processor
    Park, Jaeman
    Min, Kyoungdoug
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (20) : 10683 - 10696
  • [37] Recent advances in phosphoric acid-based membranes for high-temperature proton exchange membrane fuel cells
    Guo, Zunmin
    Perez-Page, Maria
    Chen, Jianuo
    Ji, Zhaoqi
    Holmes, Stuart M.
    JOURNAL OF ENERGY CHEMISTRY, 2021, 63 : 393 - 429
  • [38] Nanocomposite Membranes based on Polybenzimidazole and ZrO2 for High-Temperature Proton Exchange Membrane Fuel Cells
    Nawn, Graeme
    Pace, Giuseppe
    Lavina, Sandra
    Vezzu, Keti
    Negro, Enrico
    Bertasi, Federico
    Polizzi, Stefano
    Di Noto, Vito
    CHEMSUSCHEM, 2015, 8 (08) : 1381 - 1393
  • [39] New Anhydrous Proton Exchange Membrane for Intermediate Temperature Proton Exchange Membrane Fuel Cells
    Sun, Baoying
    Song, Huanqiao
    Qiu, Xinping
    Zhu, Wentao
    CHEMPHYSCHEM, 2011, 12 (06) : 1196 - 1201
  • [40] Optimization of gas diffusion layer thickness for high-temperature proton exchange membrane fuel cells
    Taiming Huang
    Dingxun Yi
    Xun Ren
    Jingmao Ma
    Yufan Xiao
    Wu Ding
    Zhongmin Wan
    Xiaodong Wang
    Yijian Xie
    Wei Zeng
    Ionics, 2024, 30 : 1511 - 1522