Multilayered Membrane Electrolytes Based on Aramid Nanofibers for High-Temperature Proton Exchange Membrane Fuel Cells

被引:62
|
作者
Liu, Lei [1 ]
Li, Ziyun [1 ]
Che, Quantong [1 ]
机构
[1] Northeastern Univ, Dept Chem, Coll Sci, Shenyang 110819, Liaoning, Peoples R China
来源
ACS APPLIED NANO MATERIALS | 2019年 / 2卷 / 04期
基金
中国国家自然科学基金;
关键词
aramid nanofibers; cadmium telluride; spin coating; proton conductivity; multilayered membranes; proton exchange membranes; PHOSPHORIC-ACID; COMPOSITE MEMBRANES; SULFONATED POLYETHERETHERKETONE; ETHER KETONE); KEVLAR; POLYBENZIMIDAZOLE; OXIDE; CONDUCTIVITY; FABRICATION; DURABILITY;
D O I
10.1021/acsanm.9b00144
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The multilayered membranes based on Kevlar nanofibers, cadmium telluride (CdTe) nanocrystals, and phosphoric acid (PA) molecules were prepared with spin coating method. The accumulation of Kevlar nanofibers could support the layered (Kevlar-CdTe-PA)(4) membrane. CdTe nanocrystals functioned as bridges to link PA molecules with Kevlar nanofibers besides improving the mechanical property. More PA molecules were captured with intermolecular hydrogen bonds while (Kevlar-CdTe-PA)(4) membranes were immersed into PA solution. PA molecules dominated the proton conductivity of (Kevlar-CdTe-PA)(4)/PA membranes. The proton conductivity of (Kevlar-CdTe-PA)(4)/85%PA membranes reached 2.35 X 10(-1) S/cm at 160 degrees C under anhydrous conditions. In comparison to the tensile stress value of 0.35 MPa for the (Kevlar-PA)(4)/85%PA membrane, the value was elevated to 2.29 MPa at room temperature (RT) for the (Kevlar-CdTe-PA)(4)/8S%PA membrane. The layered distribution of components was considered to help reduce the resistance to proton conduction in (Kevlar-CdTe-PA)(4)/PA membranes.
引用
收藏
页码:2160 / 2168
页数:17
相关论文
共 50 条
  • [41] Numerical analysis of effects of gas crossover through membrane pinholes in high-temperature proton exchange membrane fuel cells
    Chippar, Purushothama
    Oh, Kyeongmin
    Kim, Whan-Gi
    Ju, Hyunchul
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (06) : 2863 - 2871
  • [42] Ionomeric Binders for High Temperature Proton Exchange Membrane Fuel Cells
    Xing, Ruiyang
    Yu, Yaqin
    Li, Nanwen
    Geng, Kang
    Tang, Hongying
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (70)
  • [43] A review of the development of high temperature proton exchange membrane fuel cells
    Authayanun, Suthida
    Im-Orb, Karittha
    Arpornwichanop, Amornchai
    CHINESE JOURNAL OF CATALYSIS, 2015, 36 (04) : 473 - 483
  • [44] Prolongation of lifetime of high temperature proton exchange membrane fuel cells
    Oono, Yuka
    Sounai, Atsuo
    Hori, Michio
    JOURNAL OF POWER SOURCES, 2013, 241 : 87 - 93
  • [45] High-Temperature Proton-Exchange-Membrane Fuel Cells Using an Ether-Containing Polybenzimidazole Membrane as Electrolyte
    Li, Jin
    Li, Xiaojin
    Zhao, Yun
    Lu, Wangting
    Shao, Zhigang
    Yi, Baolian
    CHEMSUSCHEM, 2012, 5 (05) : 896 - 900
  • [46] Microporous layer based on SiC for high temperature proton exchange membrane fuel cells
    Lobato, Justo
    Zamora, Hector
    Canizares, Pablo
    Plaza, Jorge
    Andres Rodrigo, Manuel
    JOURNAL OF POWER SOURCES, 2015, 288 : 288 - 295
  • [47] High-temperature membrane fuel cells
    Canter, Neil
    Tribology and Lubrication Technology, 2021, 77 (03): : 14 - 15
  • [48] Proton exchange membranes for high temperature proton exchange membrane fuel cells: Challenges and perspectives
    Qu, Erli
    Hao, Xiaofeng
    Xiao, Min
    Han, Dongmei
    Huang, Sheng
    Huang, Zhiheng
    Wang, Shuanjin
    Meng, Yuezhong
    JOURNAL OF POWER SOURCES, 2022, 533
  • [49] Exergy Analysis of High-Temperature Proton Exchange Membrane Fuel Cell Systems
    Ye, Lin
    Jiao, Kui
    Du, Qing
    Yin, Yan
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2015, 12 (09) : 917 - 929
  • [50] Advancements in proton exchange membranes for high-performance high-temperature proton exchange membrane fuel cells (HT-PEMFC)
    Li, Guoqiang
    Kujawski, Wojciech
    Rynkowska, Edyta
    REVIEWS IN CHEMICAL ENGINEERING, 2022, 38 (03) : 327 - 346