Strategies for Mitigating Phosphoric Acid Leaching in High-Temperature Proton Exchange Membrane Fuel Cells

被引:1
|
作者
Xu, Zhongming [1 ]
Chen, Nanjie [1 ]
Huang, Sheng [1 ]
Wang, Shuanjin [1 ]
Han, Dongmei [2 ]
Xiao, Min [1 ]
Meng, Yuezhong [1 ,2 ,3 ,4 ]
机构
[1] Sun Yat sen Univ, Sch Mat Sci & Engn, Key Lab Low Carbon Chem & Energy Conservat Guangdo, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Peoples R China
[2] Sun Yat sen Univ, Sch Chem Engn & Technol, Zhuhai 519000, Peoples R China
[3] Henan Prov Acad Sci, Inst Chem, Zhengzhou 450000, Peoples R China
[4] Zhengzhou Univ, Coll Chem, Zhengzhou 450001, Peoples R China
来源
MOLECULES | 2024年 / 29卷 / 18期
关键词
fuel cell; high-temperature polymer electrolyte membrane; membrane electrode assembly; PA leaching; durability; LINKED POLYBENZIMIDAZOLE MEMBRANES; POLYMER ELECTROLYTE MEMBRANE; POLY(ARYLENE ETHER KETONE); QUATERNARY AMMONIUM GROUPS; DOPED POLYBENZIMIDAZOLE; CONDUCTING MEMBRANES; CROSS-LINKING; HIGH-PERFORMANCE; PBI MEMBRANES; PEM;
D O I
10.3390/molecules29184480
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
High-temperature proton exchange membrane fuel cells (HT-PEMFCs) have become one of the important development directions of PEMFCs because of their outstanding features, including fast reaction kinetics, high tolerance against impurities in fuel, and easy heat and water management. The proton exchange membrane (PEM), as the core component of HT-PEMFCs, plays the most critical role in the performance of fuel cells. Phosphoric acid (PA)-doped membranes have showed satisfied proton conductivity at high-temperature and anhydrous conditions, and significant advancements have been achieved in the design and development of HT-PEMFCs based on PA-doped membranes. However, the persistent issue of HT-PEMFCs caused by PA leaching remains a challenge that cannot be ignored. This paper provides a concise overview of the proton conduction mechanism in HT-PEMs and the underlying causes of PA leaching in HT-PEMFCs and highlights the strategies aimed at mitigating PA leaching, such as designing crosslinked structures, incorporation of hygroscopic nanoparticles, improving the alkalinity of polymers, covalently linking acidic groups, preparation of multilayer membranes, constructing microporous structures, and formation of micro-phase separation. This review will offer a guidance for further research and development of HT-PEMFCs with high performance and longevity.
引用
收藏
页数:34
相关论文
共 50 条
  • [1] Phosphoric Acid Based Proton Exchange Membranes for High Temperature Proton Exchange Membrane Fuel Cells
    Bai, Yu
    Wang, Shuanjin
    Xiao, Min
    Meng, Yuezhong
    Wang, Chengxin
    PROGRESS IN CHEMISTRY, 2021, 33 (03) : 426 - 441
  • [2] Research progress on key materials of phosphoric acid doped high-temperature proton exchange membrane fuel cells
    Xiang Y.
    Li W.
    Guo Z.
    Zhang J.
    Lu S.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2022, 48 (09): : 1791 - 1805
  • [3] Recent advances in phosphoric acid-based membranes for high-temperature proton exchange membrane fuel cells
    Guo, Zunmin
    Perez-Page, Maria
    Chen, Jianuo
    Ji, Zhaoqi
    Holmes, Stuart M.
    JOURNAL OF ENERGY CHEMISTRY, 2021, 63 : 393 - 429
  • [4] Phosphoric acid distribution in the membrane electrode assembly of high temperature proton exchange membrane fuel cells
    Kwon, Kyungjung
    Park, Jung Ock
    Yoo, Duck Young
    Yi, Jung S.
    ELECTROCHIMICA ACTA, 2009, 54 (26) : 6570 - 6575
  • [5] Unusual influence of binder composition and phosphoric acid leaching on oxygen mass transport in catalyst layers of high-temperature proton exchange membrane fuel cells
    Zhang, Shuomeng
    Zhang, Jujia
    Zhu, Zejie
    Liu, Pan
    Cao, Fahe
    Chen, Jian
    He, Qinggang
    Dou, Mei
    Nan, Suifei
    Lu, Shanfu
    JOURNAL OF POWER SOURCES, 2020, 473
  • [6] Doping phosphoric acid in polybenzimidazole membranes for high temperature proton exchange membrane fuel cells
    He, Ronghuan
    Li, Qingfeng
    Jensen, Jens Oluf
    Bjerrum, Niels J.
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2007, 45 (14) : 2989 - 2997
  • [7] Dimensionally-stable phosphoric acid-doped polybenzimidazoles for high-temperature proton exchange membrane fuel cells
    Li, Xiaobai
    Ma, Hongwei
    Shen, Yanchao
    Hu, Wei
    Jiang, Zhenhua
    Liu, Baijun
    Guiver, Michael D.
    JOURNAL OF POWER SOURCES, 2016, 336 : 391 - 400
  • [8] Maximization of high-temperature proton exchange membrane fuel cell performance with the optimum distribution of phosphoric acid
    Kwon, Yungjung
    Kim, Tae Young
    Yoo, Duck Young
    Hong, Suk-Gi
    Park, Jung Ock
    JOURNAL OF POWER SOURCES, 2009, 188 (02) : 463 - 467
  • [9] Influence of the phosphoric acid-doping level in a polybenzimidazole membrane on the cell performance of high-temperature proton exchange membrane fuel cells
    Oono, Yuka
    Sounai, Atsuo
    Hori, Michio
    JOURNAL OF POWER SOURCES, 2009, 189 (02) : 943 - 949
  • [10] Temperature dependence of CO poisoning in high-temperature proton exchange membrane fuel cells with phosphoric acid-doped polybenzimidazole membranes
    Oh, Kyeongmin
    Ju, Hyunchul
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (24) : 7743 - 7753