Strategies for Mitigating Phosphoric Acid Leaching in High-Temperature Proton Exchange Membrane Fuel Cells

被引:1
|
作者
Xu, Zhongming [1 ]
Chen, Nanjie [1 ]
Huang, Sheng [1 ]
Wang, Shuanjin [1 ]
Han, Dongmei [2 ]
Xiao, Min [1 ]
Meng, Yuezhong [1 ,2 ,3 ,4 ]
机构
[1] Sun Yat sen Univ, Sch Mat Sci & Engn, Key Lab Low Carbon Chem & Energy Conservat Guangdo, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Peoples R China
[2] Sun Yat sen Univ, Sch Chem Engn & Technol, Zhuhai 519000, Peoples R China
[3] Henan Prov Acad Sci, Inst Chem, Zhengzhou 450000, Peoples R China
[4] Zhengzhou Univ, Coll Chem, Zhengzhou 450001, Peoples R China
来源
MOLECULES | 2024年 / 29卷 / 18期
关键词
fuel cell; high-temperature polymer electrolyte membrane; membrane electrode assembly; PA leaching; durability; LINKED POLYBENZIMIDAZOLE MEMBRANES; POLYMER ELECTROLYTE MEMBRANE; POLY(ARYLENE ETHER KETONE); QUATERNARY AMMONIUM GROUPS; DOPED POLYBENZIMIDAZOLE; CONDUCTING MEMBRANES; CROSS-LINKING; HIGH-PERFORMANCE; PBI MEMBRANES; PEM;
D O I
10.3390/molecules29184480
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
High-temperature proton exchange membrane fuel cells (HT-PEMFCs) have become one of the important development directions of PEMFCs because of their outstanding features, including fast reaction kinetics, high tolerance against impurities in fuel, and easy heat and water management. The proton exchange membrane (PEM), as the core component of HT-PEMFCs, plays the most critical role in the performance of fuel cells. Phosphoric acid (PA)-doped membranes have showed satisfied proton conductivity at high-temperature and anhydrous conditions, and significant advancements have been achieved in the design and development of HT-PEMFCs based on PA-doped membranes. However, the persistent issue of HT-PEMFCs caused by PA leaching remains a challenge that cannot be ignored. This paper provides a concise overview of the proton conduction mechanism in HT-PEMs and the underlying causes of PA leaching in HT-PEMFCs and highlights the strategies aimed at mitigating PA leaching, such as designing crosslinked structures, incorporation of hygroscopic nanoparticles, improving the alkalinity of polymers, covalently linking acidic groups, preparation of multilayer membranes, constructing microporous structures, and formation of micro-phase separation. This review will offer a guidance for further research and development of HT-PEMFCs with high performance and longevity.
引用
收藏
页数:34
相关论文
共 50 条
  • [11] Binaphthyl-based molecular barrier materials for phosphoric acid poisoning in high-temperature proton exchange membrane fuel cells
    Jeong, Dong-Cheol
    Mun, Bohyun
    Lee, Hyekyung
    Hwang, Seung Jun
    Yoo, Sung Jong
    Cho, EunAe
    Lee, Yunmi
    Song, Changsik
    RSC ADVANCES, 2016, 6 (65): : 60749 - 60755
  • [12] Numerical degradation studies of high-temperature proton exchange membrane fuel cells with phosphoric acid-doped PBI membranes
    Won, Seongyeon
    Oh, Kyeongmin
    Ju, Hyunchul
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (19) : 8296 - 8306
  • [13] Crosslinked ethyl phosphoric acid grafted polybenzimidazole and polybenzimidazole blend membranes for high-temperature proton exchange membrane fuel cells
    Phimraphas Ngamsantivongsa
    Hsiu-Li Lin
    T. Leon Yu
    Journal of Polymer Research, 2016, 23
  • [14] Porous polybenzimidazole membranes doped with phosphoric acid: Preparation and application in high-temperature proton-exchange-membrane fuel cells
    Li, Jin
    Li, Xiaojin
    Yu, Shuchun
    Hao, Jinkai
    Lu, Wangting
    Shao, Zhigang
    Yi, Baolian
    ENERGY CONVERSION AND MANAGEMENT, 2014, 85 : 323 - 327
  • [15] Crosslinked ethyl phosphoric acid grafted polybenzimidazole and polybenzimidazole blend membranes for high-temperature proton exchange membrane fuel cells
    Ngamsantivongsa, Phimraphas
    Lin, Hsiu-Li
    Yu, T. Leon
    JOURNAL OF POLYMER RESEARCH, 2016, 23 (02) : 1 - 11
  • [16] Recent advances in phosphoric acid–based membranes for high–temperature proton exchange membrane fuel cells
    Guo, Zunmin (zunmin.guo@manchester.ac.uk), 1600, Elsevier B.V. (63):
  • [17] Recent advances in phosphoric acid–based membranes for high–temperature proton exchange membrane fuel cells
    Zunmin Guo
    Maria Perez-Page
    Jianuo Chen
    Zhaoqi Ji
    Stuart M.Holmes
    Journal of Energy Chemistry , 2021, (12) : 393 - 429
  • [18] Phosphoric acid doped imidazolium polysulfone membranes for high temperature proton exchange membrane fuel cells
    Yang, Jingshuai
    Li, Qingfeng
    Jensen, Jens Oluf
    Pan, Chao
    Cleemann, Lars N.
    Bjerrum, Niels J.
    He, Ronghuan
    JOURNAL OF POWER SOURCES, 2012, 205 : 114 - 121
  • [19] Performance failure mechanisms and mitigation strategies of high-temperature proton exchange membrane fuel cells
    Wang, Shufan
    Zheng, Yun
    Xv, Chenhui
    Liu, Haishan
    Li, Lingfei
    Yan, Wei
    Zhang, Jiujun
    PROGRESS IN MATERIALS SCIENCE, 2025, 148
  • [20] A novel phosphoric acid doped poly(ethersulphone)-poly(vinyl pyrrolidone) blend membrane for high-temperature proton exchange membrane fuel cells
    Xu, Xin
    Wang, Haining
    Lu, Shanfu
    Guo, Zhibin
    Rao, Siyuan
    Xiu, Ruijie
    Xiang, Yan
    JOURNAL OF POWER SOURCES, 2015, 286 : 458 - 463