Lower bounds on the coefficients of Ehrhart polynomials

被引:19
|
作者
Henk, Martin [1 ]
Tagami, Makoto [1 ]
机构
[1] Univ Magdeburg, Inst Algebra & Geometrie, D-39106 Magdeburg, Germany
基金
日本学术振兴会;
关键词
GEOMETRIE DIOPHANTIENNE; ROOTS;
D O I
10.1016/j.ejc.2008.02.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present lower bounds for the coefficients of Ehrhart polynomials of convex lattice polytopes in terms of their volume. Concerning the coefficients of the Ehrhart series of a lattice polytope we show that Hibi's lower bound is not true for lattice polytopes without interior lattice points. The counterexample is based on a formula of the Ehrhart series of the join of two lattice polytope. We also present a formula for calculating the Ehrhart series of integral dilates of a polytope. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:70 / 83
页数:14
相关论文
共 50 条
  • [21] Characteristic and Ehrhart polynomials
    Blass, A
    Sagan, BE
    JOURNAL OF ALGEBRAIC COMBINATORICS, 1998, 7 (02) : 115 - 126
  • [22] GENERALIZED EHRHART POLYNOMIALS
    Chen, Sheng
    Li, Nan
    Sam, Steven V.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (01) : 551 - 569
  • [23] Computation of the Highest Coefficients of Weighted Ehrhart Quasi-polynomials of Rational Polyhedra
    Baldoni, V.
    Berline, N.
    De Loera, J. A.
    Koeppe, M.
    Vergne, M.
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2012, 12 (04) : 435 - 469
  • [24] LOWER BOUNDS AND UPPER-BOUNDS FOR CHROMATIC POLYNOMIALS
    DOHMEN, K
    JOURNAL OF GRAPH THEORY, 1993, 17 (01) : 75 - 80
  • [25] Computation of the Highest Coefficients of Weighted Ehrhart Quasi-polynomials of Rational Polyhedra
    V. Baldoni
    N. Berline
    J. A. De Loera
    M. Köppe
    M. Vergne
    Foundations of Computational Mathematics, 2012, 12 : 435 - 469
  • [26] LOWER BOUNDS FOR POLYNOMIALS OF A QUATERNIONIC VARIABLE
    Gentili, Graziano
    Struppa, Daniele C.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (05) : 1659 - 1668
  • [27] Lower bounds for norms of products of polynomials
    Benítez, C
    Sarantopoulos, Y
    Tonge, A
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1998, 124 : 395 - 408
  • [28] Lower Bounds for Polynomials of Many Variables
    Margaryan, V. N.
    Ghazaryan, H. G.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2017, 52 (05): : 211 - 220
  • [29] On lower bounds for the complexity of polynomials and their multiples
    W. Baur
    K. Halupczok
    computational complexity, 1999, 8 : 309 - 315
  • [30] On lower bounds for the complexity of polynomials and their multiples
    Baur, W
    Halupczok, K
    COMPUTATIONAL COMPLEXITY, 1999, 8 (04) : 309 - 315