On lower bounds for the complexity of polynomials and their multiples

被引:4
|
作者
Baur, W [1 ]
Halupczok, K [1 ]
机构
[1] Univ Konstanz, Fak Math & Informat, D-78457 Constance, Germany
关键词
algebraic complexity; lower bounds;
D O I
10.1007/s000370050001
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove a theorem giving arbitrarily long explicit sequences x(1),..., x(s), of algebraic numbers such that any nonzero polynomial f(X) satisfying f(x(1)) = = f(x(s),) = 0 has nonscalar complexity > C root s for some positive constant C independent of s. A similar result is shown for rapidly growing rational sequences.
引用
收藏
页码:309 / 315
页数:7
相关论文
共 50 条