LOWER BOUNDS FOR POLYNOMIALS OF A QUATERNIONIC VARIABLE

被引:1
|
作者
Gentili, Graziano [1 ]
Struppa, Daniele C. [2 ]
机构
[1] Univ Florence, Dipartimento Matemat U Dini, I-50134 Florence, Italy
[2] Chapman Univ, Schmid Coll Sci & Technol, Orange, CA 92866 USA
关键词
REGULAR FUNCTIONS; THEOREM;
D O I
10.1090/S0002-9939-2011-11027-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove an analog of the Ehrenpreis-Malgrange Lemma for polynomials with quaternionic coefficients, and we apply it to obtain a bound on the growth of the quotient between a slice regular function and a quaternionic polynomial.
引用
收藏
页码:1659 / 1668
页数:10
相关论文
共 50 条
  • [1] ON THE ZERO BOUNDS OF POLYNOMIALS AND REGULAR FUNCTIONS OF A QUATERNIONIC VARIABLE
    Milovanovic, Gradimir, V
    Mir, Abdullah
    [J]. APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2023, 17 (01) : 216 - 231
  • [2] Estimation of Bounds for the Zeros of Polynomials and Regular Functions of a Quaternionic Variable
    Mir, Abdullah
    Ahmad, Abrar
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (03)
  • [3] Estimation of Bounds for the Zeros of Polynomials and Regular Functions of a Quaternionic Variable
    Abdullah Mir
    Abrar Ahmad
    [J]. Complex Analysis and Operator Theory, 2024, 18
  • [4] On The Zero Bounds Of Quaternionic Polynomials With Restricted Coefficients
    Wani, Irfan Ahmad
    Hussain, Adil
    [J]. APPLIED MATHEMATICS E-NOTES, 2024, 24 : 55 - 63
  • [5] On the Zero Bounds of Quaternionic Polynomials with Restricted Coefficients
    Hussain, Adil
    Wani, Irfan Ahmad
    [J]. VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2024, 57 (03) : 360 - 367
  • [6] Zeros of Regular Functions and Polynomials of a Quaternionic Variable
    Gentili, Graziano
    Stoppato, Caterina
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 2008, 56 (03) : 655 - 667
  • [7] Lower bounds for discriminants of polynomials
    Kim, Kwang-Seob
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (10) : 2765 - 2772
  • [8] LOWER BOUNDS FOR THE COMPLEXITY OF POLYNOMIALS
    STOSS, HJ
    [J]. THEORETICAL COMPUTER SCIENCE, 1989, 64 (01) : 15 - 23
  • [9] Quantum lower bounds by polynomials
    Beals, R
    Buhrman, H
    Cleve, R
    Mosca, M
    De Wolf, R
    [J]. JOURNAL OF THE ACM, 2001, 48 (04) : 778 - 797
  • [10] Quantum lower bounds by polynomials
    Beals, R
    Buhrman, H
    Cleve, R
    Mosca, M
    de Wolf, R
    [J]. 39TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1998, : 352 - 361