ON THE SEGMENTATION OF SWITCHING AUTOREGRESSIVE PROCESSES BY NONPARAMETRIC BAYESIAN METHODS

被引:0
|
作者
Dash, Shishir [1 ]
Djuric, Petar M. [1 ]
机构
[1] SUNY Stony Brook, Dept Elect & Comp Engn, Stony Brook, NY 11794 USA
关键词
hidden Markov model; autoregressive process segmentation; hierarchical Dirichlet process; Gibbs sampling; non-parametric Bayesian; HIDDEN MARKOV-MODELS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We demonstrate the use of a variant of the nonparametric Bayesian (NPB) forward-backward (FB) method for sampling state sequences of hidden Markov models (HMMs), when the continuous-valued observations follow autoregressive (AR) processes. The goal is to get an accurate representation of the posterior probability of the state-sequence configuration. The advantage of using NPB samplers towards this end is well-known; one need not specify (or heuristically estimate) the number of states present in the model. Instead one uses hierarchical Dirichlet processes (HDPs) as priors for the state-transition probabilities to account for a potentially infinite number of states. The FB algorithm is known to increase the mixing rate of such samplers (compared to direct Gibbs), but can still yield significant spread in segmentation error. We show that by approximately integrating out some parameters of the model, one can alleviate this problem considerably.
引用
收藏
页码:1197 / 1201
页数:5
相关论文
共 50 条
  • [31] Nonparametric Bayesian methods in hierarchical models
    Escobar, M. D.
    Journal of Statistical Planning and Inference, 43 (1-2):
  • [32] Bayesian Model Selection for Beta Autoregressive Processes
    Casarin, Roberto
    Dalla Valle, Luciana
    Leisen, Fabrizio
    BAYESIAN ANALYSIS, 2012, 7 (02): : 385 - 409
  • [33] Robot Introspection with Bayesian Nonparametric Vector Autoregressive Hidden Markov Models
    Wu, Hongmin
    Lin, Hongbin
    Guan, Yisheng
    Harada, Kensuke
    Rojas, Juan
    2017 IEEE-RAS 17TH INTERNATIONAL CONFERENCE ON HUMANOID ROBOTICS (HUMANOIDS), 2017, : 882 - 888
  • [34] TESTING STATIONARITY IN THE MEAN OF AUTOREGRESSIVE PROCESSES WITH A NONPARAMETRIC REGRESSION TREND
    MILBRODT, H
    ANNALS OF STATISTICS, 1992, 20 (03): : 1426 - 1440
  • [35] Nonparametric Bayesian Modeling and Estimation for Renewal Processes
    Sansó, Bruno, 1600, American Statistical Association (63):
  • [36] Bayesian nonparametric inference for mixed Poisson processes
    Gutiérrez-Peña, E
    Nieto-Barajas, LE
    BAYESIAN STATISTICS 7, 2003, : 163 - 179
  • [37] Bayesian Nonparametric Inference of Switching Dynamic Linear Models
    Fox, Emily
    Sudderth, Erik B.
    Jordan, Michael I.
    Willsky, Alan S.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (04) : 1569 - 1585
  • [38] Combinatorial Stochastic Processes and Nonparametric Bayesian Modeling
    Jordan, Michael I.
    PROCEEDINGS OF THE TWENTIETH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2009, : 139 - 139
  • [39] Nonparametric Bayesian Modeling and Estimation for Renewal Processes
    Xiao, Sai
    Kottas, Athanasios
    Sanso, Bruno
    Kim, Hyotae
    TECHNOMETRICS, 2021, 63 (01) : 100 - 115
  • [40] NONPARAMETRIC BAYESIAN ESTIMATION FOR MULTIVARIATE HAWKES PROCESSES
    Donnet, Sophie
    Rivoirard, Vincent
    Rousseau, Judith
    ANNALS OF STATISTICS, 2020, 48 (05): : 2698 - 2727