ON THE SEGMENTATION OF SWITCHING AUTOREGRESSIVE PROCESSES BY NONPARAMETRIC BAYESIAN METHODS

被引:0
|
作者
Dash, Shishir [1 ]
Djuric, Petar M. [1 ]
机构
[1] SUNY Stony Brook, Dept Elect & Comp Engn, Stony Brook, NY 11794 USA
关键词
hidden Markov model; autoregressive process segmentation; hierarchical Dirichlet process; Gibbs sampling; non-parametric Bayesian; HIDDEN MARKOV-MODELS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We demonstrate the use of a variant of the nonparametric Bayesian (NPB) forward-backward (FB) method for sampling state sequences of hidden Markov models (HMMs), when the continuous-valued observations follow autoregressive (AR) processes. The goal is to get an accurate representation of the posterior probability of the state-sequence configuration. The advantage of using NPB samplers towards this end is well-known; one need not specify (or heuristically estimate) the number of states present in the model. Instead one uses hierarchical Dirichlet processes (HDPs) as priors for the state-transition probabilities to account for a potentially infinite number of states. The FB algorithm is known to increase the mixing rate of such samplers (compared to direct Gibbs), but can still yield significant spread in segmentation error. We show that by approximately integrating out some parameters of the model, one can alleviate this problem considerably.
引用
收藏
页码:1197 / 1201
页数:5
相关论文
共 50 条
  • [21] Joint segmentation of piecewise constant autoregressive processes by using a hierarchical model and a Bayesian sampling approach
    Dobigeon, Nicolas
    Tourneret, Jean-Yves
    Davy, Manuel
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2007, 55 (04) : 1251 - 1263
  • [22] BAYESIAN NONPARAMETRIC SMOOTHERS FOR REGULAR PROCESSES
    WEERAHANDI, S
    ZIDEK, JV
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1988, 16 (01): : 61 - 74
  • [23] Smooth image segmentation by nonparametric Bayesian inference
    Orbanz, P
    Buhmann, JM
    COMPUTER VISION - ECCV 2006 , PT 1, PROCEEDINGS, 2006, 3951 : 444 - 457
  • [24] Bayesian Nonparametric Analysis of Transcriptional Processes
    Kilic, Zeliha
    Presse, Steve
    BIOPHYSICAL JOURNAL, 2019, 116 (03) : 299A - 299A
  • [25] Nonparametric estimation of time varying autoregressive nonlinear processes
    Hilgert, N
    Senoussi, R
    Vila, JP
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 323 (09): : 1085 - 1090
  • [26] Nonparametric Bayesian estimators for counting processes
    Kim, YD
    ANNALS OF STATISTICS, 1999, 27 (02): : 562 - 588
  • [27] Bayesian Identification of Distributed Vector AutoRegressive Processes
    Coluccia, Angelo
    Dabbene, Fabrizio
    Ravazzi, Chiara
    2019 18TH EUROPEAN CONTROL CONFERENCE (ECC), 2019, : 842 - 847
  • [28] Nonparametric Bayesian methods in hierarchical models
    Escobar, M. D.
    Parfumerie und Kosmetik, 7646
  • [29] Bayesian Identification of Seasonal Multivariate Autoregressive Processes
    Shaarawy, Samir M.
    Ali, Sherif S.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (04) : 823 - 836
  • [30] On the Frequentist Properties of Bayesian Nonparametric Methods
    Rousseau, Judith
    ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 3, 2016, 3 : 211 - 231