Interpolation of matrices and matrix-valued densities: The unbalanced case

被引:11
|
作者
Chen, Yongxin [1 ]
Georgiou, Tryphon T. [2 ]
Tannenbaum, Allen [3 ,4 ]
机构
[1] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA
[2] Univ Calif Irvine, Dept Mech & Aerosp Engn, Irvine, CA 92717 USA
[3] SUNY Stony Brook, Dept Comp Sci & Appl Math, Stony Brook, NY 11794 USA
[4] SUNY Stony Brook, Dept Stat, Stony Brook, NY 11794 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Optimal mass transport; quantum mechanics; matrix-valued densities; Fisher-Rao information; Wasserstein metric; HELLINGER-KANTOROVICH DISTANCE; OPTIMAL TRANSPORT; MASS-TRANSPORT; FLOW;
D O I
10.1017/S0956792518000219
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose unbalanced versions of the quantum mechanical version of optimal mass transport that is based on the Lindblad equation describing open quantum systems. One of them is a natural interpolation framework between matrices and matrix-valued measures via a quantum mechanical formulation of Fisher-Rao information and the matricial Wasserstein distance, and the second is an interpolation between Wasserstein distance and Frobenius norm. We also give analogous results for the matrix-valued density measures, i.e., we add a spatial dependency on the density matrices. This might extend the applications of the framework to interpolating matrix-valued densities/images with unequal masses.
引用
收藏
页码:458 / 480
页数:23
相关论文
共 50 条
  • [31] FACTORIZATION OF MATRIX-VALUED FUNCTIONS
    LAX, PD
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1976, 29 (06) : 683 - 688
  • [32] The matrix-valued hypergeometric equation
    Tirao, JA
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (14) : 8138 - 8141
  • [33] Matrix-Valued Factorization Identities
    Kobayashi, Toshiyuki
    Kubo, Toshihisa
    Pevzner, Michael
    CONFORMAL SYMMETRY BREAKING OPERATORS FOR DIFFERENTIAL FORMS ON SPHERES, 2016, 2170 : 155 - 172
  • [34] Matrix-valued Bessel processes
    Larsson, Martin
    ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 : 1 - 29
  • [35] A Matrix-Valued Kuramoto Model
    Bronski, Jared C.
    Carty, Thomas E.
    Simpson, Sarah E.
    JOURNAL OF STATISTICAL PHYSICS, 2020, 178 (02) : 595 - 624
  • [36] Matrix-Valued and Quaternion Wavelets
    Ginzberg, P.
    Walden, A. T.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (06) : 1357 - 1367
  • [37] Asymptotic spectra of matrix-valued functions of independent random matrices and free probability
    Goetze, F.
    Koesters, H.
    Tikhomirov, A.
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2015, 4 (02)
  • [38] Existence of Matrix-Valued Multiresolution Analysis-Based Matrix-Valued Tight Wavelet Frames
    Cui, Lihong
    Zhu, Ning
    Wang, Youquan
    Sun, Jianjun
    Cen, Yigang
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2016, 37 (09) : 1089 - 1106
  • [39] A matrix-valued Bernoulli distribution
    Lovison, G
    JOURNAL OF MULTIVARIATE ANALYSIS, 2006, 97 (07) : 1573 - 1585
  • [40] On Existence of Matrix-Valued Wavelets
    Yu, Baomin
    ADVANCED RESEARCH ON MATERIAL ENGINEERING, CHEMISTRY AND BIOINFORMATICS, PTS 1 AND 2 (MECB 2011), 2011, 282-283 : 153 - 156