Interpolation of matrices and matrix-valued densities: The unbalanced case

被引:11
|
作者
Chen, Yongxin [1 ]
Georgiou, Tryphon T. [2 ]
Tannenbaum, Allen [3 ,4 ]
机构
[1] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA
[2] Univ Calif Irvine, Dept Mech & Aerosp Engn, Irvine, CA 92717 USA
[3] SUNY Stony Brook, Dept Comp Sci & Appl Math, Stony Brook, NY 11794 USA
[4] SUNY Stony Brook, Dept Stat, Stony Brook, NY 11794 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Optimal mass transport; quantum mechanics; matrix-valued densities; Fisher-Rao information; Wasserstein metric; HELLINGER-KANTOROVICH DISTANCE; OPTIMAL TRANSPORT; MASS-TRANSPORT; FLOW;
D O I
10.1017/S0956792518000219
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose unbalanced versions of the quantum mechanical version of optimal mass transport that is based on the Lindblad equation describing open quantum systems. One of them is a natural interpolation framework between matrices and matrix-valued measures via a quantum mechanical formulation of Fisher-Rao information and the matricial Wasserstein distance, and the second is an interpolation between Wasserstein distance and Frobenius norm. We also give analogous results for the matrix-valued density measures, i.e., we add a spatial dependency on the density matrices. This might extend the applications of the framework to interpolating matrix-valued densities/images with unequal masses.
引用
收藏
页码:458 / 480
页数:23
相关论文
共 50 条