The matrix-valued hypergeometric equation

被引:52
|
作者
Tirao, JA [1 ]
机构
[1] Univ Nacl Cordoba, Fac Matemat Astron & Fis, Ctr Invest & Estudios Matemat Cordoba, RA-5000 Cordoba, Argentina
关键词
D O I
10.1073/pnas.1337650100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The hypergeometric differential equation was found by Euler [Euler, L. (1769) Opera Omnia Ser. 1, 11-13] and was extensively studied by Gauss [Gauss, C. F. (1812) Comm. Soc. Reg. Sci. II 3, 123-162], Kummer [Kummer, E. J. (1836) Riene Ang. Math. 15, 39-83; Kummer, E. J. (1836) Riene Ang. Math. 15, 127-172], and Riemann [Riemann, B. (1857) K. Gess. Wiss. 7, 1-24]. The hypergeometric function known also as Gauss' function is the unique solution of the hypergeometric equation analytic at z = 0 and with value 1 at z = 0. This function, because of its remarkable properties, has been used for centuries in the whole subject of special functions. In this article we give a matrix-valued analog of the hypergeometric differential equation and of Gauss' function. One can only speculate that many of the connections that made Gauss' function a vital part of mathematics at the end of the 20th century will be shared by its matrix-valued version, discussed here.
引用
收藏
页码:8138 / 8141
页数:4
相关论文
共 50 条
  • [1] Solutions at infinity of the generalized matrix-valued hypergeometric equation
    Roman, P.
    Simondi, S.
    [J]. APPLIED MATHEMATICS LETTERS, 2010, 23 (01) : 39 - 43
  • [2] A Hypergeometric Function Transform and Matrix-Valued Orthogonal Polynomials
    Wolter Groenevelt
    Erik Koelink
    [J]. Constructive Approximation, 2013, 38 : 277 - 309
  • [3] A Hypergeometric Function Transform and Matrix-Valued Orthogonal Polynomials
    Groenevelt, Wolter
    Koelink, Erik
    [J]. CONSTRUCTIVE APPROXIMATION, 2013, 38 (02) : 277 - 309
  • [4] Matrix-Valued hypergeometric Appell-Type polynomials
    Hidan, Muajebah
    Bakhet, Ahmed
    Abd-Elmageed, Hala
    Abdalla, Mohamed
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (08): : 2964 - 2980
  • [5] THE GENERALIZED MATRIX VALUED HYPERGEOMETRIC EQUATION
    Roman, P.
    Simondi, S.
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2010, 21 (02) : 145 - 155
  • [6] Matrix-valued Boltzmann equation for the Hubbard chain
    Fuerst, Martin L. R.
    Mendl, Christian B.
    Spohn, Herbert
    [J]. PHYSICAL REVIEW E, 2012, 86 (03):
  • [7] Derivation of a matrix-valued Boltzmann equation for the Hubbard model
    Fuerst, Martin L. R.
    Lukkarinen, Jani
    Mei, Peng
    Spohn, Herbert
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (48)
  • [8] Matrix-valued Boltzmann equation for the nonintegrable Hubbard chain
    Fuerst, Martin L. R.
    Mendl, Christian B.
    Spohn, Herbert
    [J]. PHYSICAL REVIEW E, 2013, 88 (01):
  • [9] MATRIX-VALUED INEQUALITIES
    THOMPSON, RC
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1984, 59 (JUN) : 185 - 186
  • [10] ENTIRE MATRIX-VALUED FUNCTIONS
    MIZORIOBLAK, P
    VIDAV, I
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1978, 22 (DEC) : 25 - 31