Tumor Classification Using Non-negative Matrix Factorization

被引:0
|
作者
Zhang, Ping [2 ]
Zheng, Chun-Hou [1 ,3 ]
Li, Bo [3 ]
Wen, Chang-Gang [1 ]
机构
[1] Qufu Normal Univ, Coll Informat & Commun Technol, Rizhao 276826, Shandong, Peoples R China
[2] Qufu Normal Univ, Inst Automat, Rizhao 276826, Shandong, Peoples R China
[3] Chinese Acad Sci, Inst Intelligent Machines, Intelligent Comp Lab, Hefei 230031, Peoples R China
基金
美国国家科学基金会; 中国博士后科学基金;
关键词
Gene expression data; Non-negative matrix factorization; SVM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the advent of DNA microarrys, it is now possible to use the microarry data for tumor classification. Yet previous works have not use the non-negative information of gene expression data for classification. In this paper, we propose a new method for tumor classification using gene expression data. In this method, we first extract new features of the gene expression data by virtue of non-negative matrix factorization (NMF) and its extension, i.e. sparse NMF (SNMF) then apply support vector machines (SVM) to classify the tumor samples using the extracted features. To better fit for classification aim, a new SNMF algorithm is also proposed.
引用
收藏
页码:236 / +
页数:3
相关论文
共 50 条
  • [41] Sparse Mathematical Morphology Using Non-negative Matrix Factorization
    Angulo, Jesus
    Velasco-Forero, Santiago
    MATHEMATICAL MORPHOLOGY AND ITS APPLICATIONS TO IMAGE AND SIGNAL PROCESSING, (ISMM 2011), 2011, 6671 : 1 - 12
  • [42] Extractive Document Summarization using Non-negative Matrix Factorization
    Khurana, Alka
    Bhatnagar, Vasudha
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, PT II, 2019, 11707 : 76 - 90
  • [43] Longitudinal Neuroimaging Analysis Using Non-Negative Matrix Factorization
    Stamile, Claudio
    Cotton, Francois
    Sappey-Marinier, Dominique
    Van Huffel, Sabine
    2016 12TH INTERNATIONAL CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY & INTERNET-BASED SYSTEMS (SITIS), 2016, : 55 - 61
  • [44] Optimal Bayesian clustering using non-negative matrix factorization
    Wang, Ketong
    Porter, Michael D.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 128 : 395 - 411
  • [45] Mining Frequent Patterns using Non-negative Matrix Factorization
    Batcha, Nowshath K.
    Jabbar, Bazila Banu Abdul
    PROCEEDINGS OF THE 2017 IEEE SECOND INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER AND COMMUNICATION TECHNOLOGIES (ICECCT), 2017,
  • [46] Software defect prediction using Non-Negative Matrix Factorization
    Chang R.
    Mu X.
    Zhang L.
    Journal of Software, 2011, 6 (11 SPEC. ISSUE) : 2114 - 2120
  • [47] On Rank Selection in Non-Negative Matrix Factorization Using Concordance
    Fogel, Paul
    Geissler, Christophe
    Morizet, Nicolas
    Luta, George
    MATHEMATICS, 2023, 11 (22)
  • [48] Imaging data analysis using non-negative matrix factorization
    Aonishi, Toru
    Maruyama, Ryoichi
    Ito, Tsubasa
    Miyakawa, Hiroyoshi
    Murayama, Masanori
    Ota, Keisuke
    NEUROSCIENCE RESEARCH, 2022, 179 : 51 - 56
  • [49] Query based summarization using non-negative matrix factorization
    Park, Sun
    Lee, Ju-Hong
    Ahn, Chan-Min
    Hong, Jun Sik
    Chun, Seok-Ju
    KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 3, PROCEEDINGS, 2006, 4253 : 84 - 89
  • [50] Personalized Summarization Agent Using Non-negative Matrix Factorization
    Park, Sun
    PRICAI 2008: TRENDS IN ARTIFICIAL INTELLIGENCE, 2008, 5351 : 1034 - 1038